
It’s not over with Meltdown
L1TF, POP SS, TLBleed and more ...

Vojtěch Pavlík
Director SUSE Labs



1967: Robert Marco Tomasulo

• Implemented a revolutionary algorithm
– in IBM System/360 FPU
– significantly improved execution efficiency
– today known as Tomasulo’s algorithm

• Received Eckert-Mauchly prize
– like a Nobel prize in computer architecture
– named after the creators of ENIAC

• But the consequences ...



Pipelining



Branch prediction



Cache



Double indirection





Spectre v1
Attack!



Arithmetics



Indirect branch prediction



Return target prediction



SpectreRSB
Attack!



RSB Stuffing

• To overcome SpectreRSB the kernel has to flush the 
RSB contents on every context switch

• Same what the attacker did – do a sequence of calls
and remove them from stack

• Costs performance
(not much of a surprise, is it?)



Lazy FPU switching

• FPU register save/restore used to be slow on 80387

• But disabling the FPU was fast

• So the kernel would on a context switch
Save the FPU state if it was used
Disable the FPU

• The CPU would raise an exception on FPU access
The kernel the restores saved FPU state
And remembers the FPU was used

• This avoids many costly saves and restores since most 
tasks don’t use FPU – gaining performance!



Lazy FPU Attack!

• When speculating, the CPU doesn’t check if FPU is 
disabled

• Combined with double-indirection, attacker can snoop 
FPU register contents



Eager FPU save/restore

• To mitigate, the kernel must not disable the FPU

• And save/restore FPU state on every context switch

• This costs (you knew this was coming) performance

• But fortunately there’s FXSAVE and FXRSTOR
Instructions for fast FPU state saving on modern CPUs

• So it’s not that bad after all



x86 Stack



POP SS Magic



POP SS Attack!



Interrupt stacks

• To overcome POP SS the kernel must use interrupt 
stack switching for ALL interrupts

• And when it sees an exception it needs to verify 
whether it may be coming from userspace

• Costs performance
(actually not that much, only in specific exception handlers)



SMT / HT



Percival 2005 Attack!



Page table and CR3



TLB



TLBleed Attack!



Supervisor bit





Meltdown (v3)

• Intel CPUs only look at the Supervisor bit once the 
speculation path is confirmed valid (at retirement)



KPTI

• Kernel Page Table Isolation

• Removes the "Supervisor bit" optimization

• Changes CR3 at every syscall

• Modifies stack address at every syscall

• Userspace speculation thus can’t see kernel data at all 
and can’t access them

• TLB flush at every syscall → syscall entry 4x slowdown



Present bit





L1TF Attack!

• Also known as Foreshadow
• Technique similar to Meltdown

• Can read L1D contents only

• The kernel puts stuff like swap space block numbers 
into non-present PTEs

• And these are small numbers
• Userspace cannot control them
• And the kernel lives on negative addresses
• So the attack is not all that useful



L1TF Mitigation

• To avoid L1TF from userspace the kernel has to 
sanitize all non-present PTEs to point to non-existent 
memory instead just low addresses

• This is done easily by putting 1’s in some top PTE 
address bits



L1TF and Virtualization

• A Virtual machine is in control of page tables

• And can put ANYTHING in them

• And so it can read any address via L1D Cache
● from other guests
● and from the host

• And EPTs don’t help (they’re just ignored, too)



L1D Flushing

• To prevent L1TF from a VM, we must flush L1D before 
every VMENTER

• This hurts performance quite a bit



SMT / HT



VM L1TF and HyperThreading

• L1D is shared between hyperthreads

• If two VMs run on two hyperthreads, one can snoop 
the other

• If one hyperthread runs a VM and the other the host, 
the VM can snoop the host

• And there is nothing the host can do about that
→ NO MITIGATION

• The only way is to disable HT
→ 20-50% performance impact



Really nothing?

• We could disable EPT and do it in software
● That’s actually worse than disabling HT

• We could do ganged scheduling
● That’s hard and only solves the VM-VM scenario

• But it could be enough if the Host doesn’t ever handle 
any valuable data

● In a thin-hypervisor scenario, if no data pass through the 
hypervisor, the service domain (Dom0 in Xen, etc) is bound to 
a separate core and passes data via ring buffers to VMs, VMs 
never share cores, yes, then perhaps you can leave HT on. 

● Hyper-V seems to be able to do that, Xen might in the future, 
KVM probably never will.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

