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1967: Robert Marco Tomasulo

• Implemented a revolutionary algorithm
– in IBM System/360 FPU
– significantly improved execution efficiency
– today known as Tomasulo’s algorithm

• Received Eckert-Mauchly prize
– like a Nobel prize in computer architecture
– named after the creators of ENIAC

• But the consequences ...



Pipelining



Branch prediction



Cache



Double indirection





Spectre v1
Attack!



Arithmetics



Indirect branch prediction



Return target prediction



SpectreRSB
Attack!



RSB Stuffing

• To overcome SpectreRSB the kernel has to flush the 
RSB contents on every context switch

• Same what the attacker did – do a sequence of calls
and remove them from stack

• Costs performance
(not much of a surprise, is it?)



Lazy FPU switching

• FPU register save/restore used to be slow on 80387

• But disabling the FPU was fast

• So the kernel would on a context switch
Save the FPU state if it was used
Disable the FPU

• The CPU would raise an exception on FPU access
The kernel the restores saved FPU state
And remembers the FPU was used

• This avoids many costly saves and restores since most 
tasks don’t use FPU – gaining performance!



Lazy FPU Attack!

• When speculating, the CPU doesn’t check if FPU is 
disabled

• Combined with double-indirection, attacker can snoop 
FPU register contents



Eager FPU save/restore

• To mitigate, the kernel must not disable the FPU

• And save/restore FPU state on every context switch

• This costs (you knew this was coming) performance

• But fortunately there’s FXSAVE and FXRSTOR
Instructions for fast FPU state saving on modern CPUs

• So it’s not that bad after all



x86 Stack



POP SS Magic



POP SS Attack!



Interrupt stacks

• To overcome POP SS the kernel must use interrupt 
stack switching for ALL interrupts

• And when it sees an exception it needs to verify 
whether it may be coming from userspace

• Costs performance
(actually not that much, only in specific exception handlers)



SMT / HT



Percival 2005 Attack!



Page table and CR3



TLB



TLBleed Attack!



Supervisor bit





Meltdown (v3)

• Intel CPUs only look at the Supervisor bit once the 
speculation path is confirmed valid (at retirement)



KPTI

• Kernel Page Table Isolation

• Removes the "Supervisor bit" optimization

• Changes CR3 at every syscall

• Modifies stack address at every syscall

• Userspace speculation thus can’t see kernel data at all 
and can’t access them

• TLB flush at every syscall → syscall entry 4x slowdown



Present bit





L1TF Attack!

• Also known as Foreshadow
• Technique similar to Meltdown

• Can read L1D contents only

• The kernel puts stuff like swap space block numbers 
into non-present PTEs

• And these are small numbers
• Userspace cannot control them
• And the kernel lives on negative addresses
• So the attack is not all that useful



L1TF Mitigation

• To avoid L1TF from userspace the kernel has to 
sanitize all non-present PTEs to point to non-existent 
memory instead just low addresses

• This is done easily by putting 1’s in some top PTE 
address bits



L1TF and Virtualization

• A Virtual machine is in control of page tables

• And can put ANYTHING in them

• And so it can read any address via L1D Cache
● from other guests
● and from the host

• And EPTs don’t help (they’re just ignored, too)



L1D Flushing

• To prevent L1TF from a VM, we must flush L1D before 
every VMENTER

• This hurts performance quite a bit



SMT / HT



VM L1TF and HyperThreading

• L1D is shared between hyperthreads

• If two VMs run on two hyperthreads, one can snoop 
the other

• If one hyperthread runs a VM and the other the host, 
the VM can snoop the host

• And there is nothing the host can do about that
→ NO MITIGATION

• The only way is to disable HT
→ 20-50% performance impact



Really nothing?

• We could disable EPT and do it in software
● That’s actually worse than disabling HT

• We could do ganged scheduling
● That’s hard and only solves the VM-VM scenario

• But it could be enough if the Host doesn’t ever handle 
any valuable data

● In a thin-hypervisor scenario, if no data pass through the 
hypervisor, the service domain (Dom0 in Xen, etc) is bound to 
a separate core and passes data via ring buffers to VMs, VMs 
never share cores, yes, then perhaps you can leave HT on. 

● Hyper-V seems to be able to do that, Xen might in the future, 
KVM probably never will.
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