Future of the software packaging

Tom3as Chvatal
tchvatal@suse.com
SUSE/L3 - Packaging

openSUSE

2018/10,/06

Introduction

Who

Who the hell is this sod presenting here?

e SUSE employee working as a teamlead of Packaging team

e One of the people that created Tumbleweed rolling release distro

e Formerly Gentoo developer and Council member

What

e First we will dig up some brief history of the packaging

e Then we will check up on why do we even bother with the work

e And at the end we will make fun of everyone else, or should we?

Why bother

What actually is packaging

e Postal services, software? It does not matter.

e The core goal is to get something that wrapped from point A to B
e If we focus on offline Amazon usecase the software does all the

steps:

o Get request for delivery of goods

o Gather the goods and put them to box

o Send the box to delivery center (here we diverge with reality as we can
deliver 1 resource endlessly)

Send the delivery to destination

Customer gets the goods and can enjoy his new bath duck

[e]

)

Packages on Linux

* Most distributions are leveraging some package/software
management

Debian/Ubuntu (apt + dpkg)

Arch linux (pacman)

Gentoo linux (portage)

rpm based distributions (rpm + zypper/yum/dnf)

e The same applies for phones with Android/iOS (F-Droid, etc.)

[e]

o O O

e Windows provide the application store in Windows 10 and newer

Languages

Many popular languages have their own package system/registry

CPAN (perl)

pypi (python)
cabal (haskell)

npm (JS)

Why do we need packages at all?

We need to be able to deliver software to users

We need to isolate required components

We need to ensure proper testing of the components

We need to compile all various software stacks together

We need to provide comprehensive solutions for some tasks

o Dependencies

o Updating and migration

o User management

o Post-installation configuration (first config, no wizzards)

What are packages providing to the user

e Collection of files and their respective permissions

e Metadata containing information about the software, runtime
dependencies

e Something that can be verified (vendor, signature, CVE inclusion,
etc.)

e Initial configuration provider

e Version migration management

10 of 33

Bit of history; openSUSE POV

Slackware

e Slackware was the first implementation of packaging overall

e The monolithic installation image was split to particular sets of
files that were separately installable

e The Slacware packages are plain compressed tar archives a simple
installation script is the only added feature

e The packaging tool just unpacks these files into the correct
location

e The packages were compiled directly on the package maintainer
system

12 of 33

Slackware continued

e Slackware has no concept of dependencies which asks for trouble:
o Program can fail due to a missing dependency
o Compilation can result in feature-restricted version due to a missing
optional dependency
o Program can be compiled with extra feature that was supposed to be
avoided

13 of 33

Move to RPM

RPM was a big step forward

e A compressed archive, but with metadata and dependencies

Provides package description format - specfile

But introduces a new problem: RPM is able to report
dependencies, but it is not able to evaluate and install them

Packages are organized into repositories, and a front-end resolves
them

14 of 33

Autobuild

Raising number of packages require CPU power

Packages must be rebuilt in various cases due to changes

It is hard to determine which packages need a rebuild

First automated build system Autobuild evaluated and scheduled
all the builds

Packages were no more built inside a live system! chroot FTW

15 of 33

zypper/libsolv

e Rising number of packages introduced a new major problem

e Evaluation of package dependencies in the YaST installer became
very slow

e Evaluation of the dependencies also required a lot of RAM

e Several SUSE employees were not happy with that, and they
revived their mathematical occupation, and invented a new
dependency resolver libsolv (now used as backend for both dnf and
zypper)

e Prior to zypper SUSE also tried ZENworks Management Daemon
(zmd) coded in C#

16 of 33

e
OBS

e Autobuild was a large monolithic tool that could not be scaled up
easily

e openSUSE Build Service was designed to expand the autobuild
concept:

Create many repositories for many products
Allow user access and provide ACL controls
Improve scheduler to utilize resources better
Provide solver to better figure out rebuilds
Better separation of builds (VMs)

Reproducible builds (no Tumbleweed otherwise)

O O O O O O

e Also we got bored by doing it all on our own and provide APl and
Ul to allow external contributors

e Nowadays, all SUSE Linux products are built inside OBS

17 of 33

openQA

e Newest friend on the SUSE packaging block ensuring quality of the
stuff we produce

e With Tumbleweed no mere man could test all that mess 3-5x per
week

e Machine pretending to be user that writes and clicks on stuff
e Compares partial screenshots and serial output
e Tests also weird stuff like s390x

18 of 33

Future?

RPM plans

Well | can’t say much for Debian as | am not involved there :-)

Strictification/unification in tests/reviews

Boolean dependencies (read as conditional dependencies)
Internal speedups

Linter improvements (rpmlint)

20 of 33

Flatsnaps

What motivation generally is behind this

e Create one package for all distributions

Provide latest software version for OLD distribution

Avoid problems with distribution dependencies

Isolation of applications

Allow multiple versions of installed aplications

Consistent environment for the application

22 of 33

Flatpak overview

Developed by the freedesktop.org project

Can use libraries from other Flatpaks

Provides sandboxing

flathub.org repository with apps

23 of 33

Snap overview

Developed by Canonical (Ubuntu)

.snap is filesystem snapshot (squashfs)

Sandbox using AppArmor

Apps need to bundle all the libraries they use

Ubuntu-centric

24 of 33

Appimage overview

Image mounted via FUSE

One file per application

Formerly klik/PortableLinuxApps

No sandboxing - but can utilize firejail

Really nicely integrated with OBS

25 of 33

Sounds okay, where is the catch

e Ever heard of the "DLL hell"?

¢ Offloading security auditing to extra provider (who updates the
packs)

¢ In long time we might end up with many "runtimes” (Visual C+-+
Redistributable analogy)

e Appstores will need to be audited a lot (like distribution is)

e Maintainers sometimes protect you from some crazy upstream
ideas

26 of 33

Containers

Why bother with containers

Really really really blazing fast to deploy something

Awesome for various Cl integration

Small startup image and lower resource usage

Blazing fast startup (comparing to virtual machines)

28 of 33

What can bite your arse

e Many instances of libraries to patch

People must use dockerhub or similar and update their containers

The initial containers must be trusted (shall not download
randomly from the web)

Updates mean redeploying all the containers

29 of 33

Endnote

RECAP

e Distribution packages are important for the user

e It is not always best idea to just download something to your
system from the web

e Containers can be very useful for quick deployment but it is never
fire and forget

31 0f 33

Should you devote some of your time?

e Hell yes, get involved (regardless of the distribution)

e There are always some bugs to be fixed in packages that you
personaly use

e Remember to have fun!

32 of 33

Thanks/Questions

Thank you for your attention.
Are there any questions?

33 of 33

	Introduction
	Why bother
	Bit of history; openSUSE POV
	Future?
	Flatsnaps
	Containers

	Endnote

