
Future of the software packaging

Tomáš Chvátal
tchvatal@suse.com

SUSE/L3 - Packaging

2018/10/06



Introduction



Who

Who the hell is this sod presenting here?

• SUSE employee working as a teamlead of Packaging team
• One of the people that created Tumbleweed rolling release distro
• Formerly Gentoo developer and Council member

3 of 33



What

• First we will dig up some brief history of the packaging
• Then we will check up on why do we even bother with the work
• And at the end we will make fun of everyone else, or should we?

4 of 33



Why bother



What actually is packaging

• Postal services, software? It does not matter.
• The core goal is to get something that wrapped from point A to B
• If we focus on offline Amazon usecase the software does all the

steps:
◦ Get request for delivery of goods
◦ Gather the goods and put them to box
◦ Send the box to delivery center (here we diverge with reality as we can

deliver 1 resource endlessly)
◦ Send the delivery to destination
◦ Customer gets the goods and can enjoy his new bath duck

6 of 33



Packages on Linux

• Most distributions are leveraging some package/software
management
◦ Debian/Ubuntu (apt + dpkg)
◦ Arch linux (pacman)
◦ Gentoo linux (portage)
◦ rpm based distributions (rpm + zypper/yum/dnf)

• The same applies for phones with Android/iOS (F-Droid, etc.)
• Windows provide the application store in Windows 10 and newer

7 of 33



Languages

Many popular languages have their own package system/registry

• CPAN (perl)
• pypi (python)
• cabal (haskell)
• npm (JS)
• …

8 of 33



Why do we need packages at all?

• We need to be able to deliver software to users
• We need to isolate required components
• We need to ensure proper testing of the components
• We need to compile all various software stacks together
• We need to provide comprehensive solutions for some tasks

◦ Dependencies
◦ Updating and migration
◦ User management
◦ Post-installation configuration (first config, no wizzards)

9 of 33



What are packages providing to the user

• Collection of files and their respective permissions
• Metadata containing information about the software, runtime

dependencies
• Something that can be verified (vendor, signature, CVE inclusion,

etc.)
• Initial configuration provider
• Version migration management

10 of 33



Bit of history; openSUSE POV



Slackware

• Slackware was the first implementation of packaging overall
• The monolithic installation image was split to particular sets of

files that were separately installable
• The Slacware packages are plain compressed tar archives a simple

installation script is the only added feature
• The packaging tool just unpacks these files into the correct

location
• The packages were compiled directly on the package maintainer

system

12 of 33



Slackware continued

• Slackware has no concept of dependencies which asks for trouble:
◦ Program can fail due to a missing dependency
◦ Compilation can result in feature-restricted version due to a missing

optional dependency
◦ Program can be compiled with extra feature that was supposed to be

avoided

13 of 33



Move to RPM

• RPM was a big step forward
• A compressed archive, but with metadata and dependencies
• Provides package description format - specfile
• But introduces a new problem: RPM is able to report

dependencies, but it is not able to evaluate and install them
• Packages are organized into repositories, and a front-end resolves

them

14 of 33



Autobuild

• Raising number of packages require CPU power
• Packages must be rebuilt in various cases due to changes
• It is hard to determine which packages need a rebuild
• First automated build system Autobuild evaluated and scheduled

all the builds
• Packages were no more built inside a live system! chroot FTW

15 of 33



zypper/libsolv

• Rising number of packages introduced a new major problem
• Evaluation of package dependencies in the YaST installer became

very slow
• Evaluation of the dependencies also required a lot of RAM
• Several SUSE employees were not happy with that, and they

revived their mathematical occupation, and invented a new
dependency resolver libsolv (now used as backend for both dnf and
zypper)

• Prior to zypper SUSE also tried ZENworks Management Daemon
(zmd) coded in C#

16 of 33



OBS

• Autobuild was a large monolithic tool that could not be scaled up
easily

• openSUSE Build Service was designed to expand the autobuild
concept:
◦ Create many repositories for many products
◦ Allow user access and provide ACL controls
◦ Improve scheduler to utilize resources better
◦ Provide solver to better figure out rebuilds
◦ Better separation of builds (VMs)
◦ Reproducible builds (no Tumbleweed otherwise)

• Also we got bored by doing it all on our own and provide API and
UI to allow external contributors

• Nowadays, all SUSE Linux products are built inside OBS

17 of 33



openQA

• Newest friend on the SUSE packaging block ensuring quality of the
stuff we produce

• With Tumbleweed no mere man could test all that mess 3-5x per
week

• Machine pretending to be user that writes and clicks on stuff
• Compares partial screenshots and serial output
• Tests also weird stuff like s390x

18 of 33



Future?



RPM plans

Well I can’t say much for Debian as I am not involved there :-)

• Strictification/unification in tests/reviews
• Boolean dependencies (read as conditional dependencies)
• Internal speedups
• Linter improvements (rpmlint)

20 of 33



Flatsnaps



What motivation generally is behind this

• Create one package for all distributions
• Provide latest software version for OLD distribution
• Avoid problems with distribution dependencies
• Isolation of applications
• Allow multiple versions of installed aplications
• Consistent environment for the application

22 of 33



Flatpak overview

• Developed by the freedesktop.org project
• Can use libraries from other Flatpaks
• Provides sandboxing
• flathub.org repository with apps

23 of 33



Snap overview

• Developed by Canonical (Ubuntu)
• .snap is filesystem snapshot (squashfs)
• Sandbox using AppArmor
• Apps need to bundle all the libraries they use
• Ubuntu-centric

24 of 33



Appimage overview

• Image mounted via FUSE
• One file per application
• Formerly klik/PortableLinuxApps
• No sandboxing - but can utilize firejail
• Really nicely integrated with OBS

25 of 33



Sounds okay, where is the catch

• Ever heard of the ”DLL hell”?
• Offloading security auditing to extra provider (who updates the

packs)
• In long time we might end up with many ”runtimes”(Visual C++

Redistributable analogy)
• Appstores will need to be audited a lot (like distribution is)
• Maintainers sometimes protect you from some crazy upstream

ideas

26 of 33



Containers



Why bother with containers

• Really really really blazing fast to deploy something
• Awesome for various CI integration
• Small startup image and lower resource usage
• Blazing fast startup (comparing to virtual machines)

28 of 33



What can bite your arse

• Many instances of libraries to patch
• People must use dockerhub or similar and update their containers
• The initial containers must be trusted (shall not download

randomly from the web)
• Updates mean redeploying all the containers

29 of 33



Endnote



RECAP

• Distribution packages are important for the user
• It is not always best idea to just download something to your

system from the web
• Containers can be very useful for quick deployment but it is never

fire and forget

31 of 33



Should you devote some of your time?

• Hell yes, get involved (regardless of the distribution)
• There are always some bugs to be fixed in packages that you

personaly use
• Remember to have fun!

32 of 33



Thanks/Questions

Thank you for your attention.
Are there any questions?

33 of 33


	Introduction
	Why bother
	Bit of history; openSUSE POV
	Future?
	Flatsnaps
	Containers

	Endnote

