
Dynamic Analysis in Practice

Miroslav Franc • miroslav.franc@nic.cz • October 7, 2018

Who am I?

• Developer of a C++ backend (FRED)
• Free Registry for ENUM and Domains

• https://fred.nic.cz/

What is dynamic analysis?

source binary

static
dynamic

splint
. . .

. . .
valgrind

How it works roughly?

• valgrind is an emulator

• sanitizers are parts of a compiler infrastructure

A bit of history?

• ElectricFence

• mudflap

• Purify

• PIN

Why not static analysis?

• false positives

• good to have real bugs with real reproducers

Types of Errors

Memory errors

• leaks

• out-of-bound access

• use-after-free

• use-after-return

• unitialized memory

Leaks?

{
...
goto error; // jump to a cleanup label
...
error:

free(foo);
}

{
Foo foo; // RAII
...

}

Really?

#include <stdlib.h>
#include <stdio.h>

void release(void *p) { free(*(void **)p); }
#define scoped_ptr(type, n, name) \
__attribute__((cleanup(release))) type * name = \
calloc(sizeof(type), n)

int main(void)
{

const size_t size = 10;

scoped_ptr(int, size, lots_of_ints);
}

But we can do funny stuff in C++ as well

• std::shared_ptr cycles

• std::unique_ptr’s get() and release()

• accidental temporaries

Multi-threaded errors

• data races
• two threads access a shared memory and at least one is write

• deadlocks

• lock contention

Other kinds of Undefined behavior

• signed overflow

• null pointer dereference

• misaligned pointer dereference

• divide by zero

• load of out-of-range bool or enum value

• VLA size is negative

VLA?

int foo(int n)
{

char array[n];
...

}

int foo()
{

folly::small_vector<char, 1024> vec;
...

}

memcpy vs. memmove

• restrict keyword

• memcheck or memstomp

Valgrind

• english speakers tend to get the name wrong

• not just memcheck, it is more like a framework
• memcheck, drd, helgrind. . .

Address Sanitizer

• (-fsanitize=address)

• out-of-bound access (heap, stack, global ojects)

• use-after-free

• less than 2x times slower

• red-zones
• compiler - stack, global objects

• run-time library - heap

ODR violation

• ASAN_OPTIONS=detect_odr_violation=1

Leak Sanitizer

• (-fsanitize=leak)

• is part of address sanitizer

Memory Sanitizer

• (-fsanitize=memory)

• unitialized memory

• less than 3x times slower

• shadow memory, 1-1

• you need to recompile the world :(

• variable names

Thread Sanitizer

• (-fsanitize=thread)

• ~10x times slower

• first version was based on valgrind

• support for atomics

Bad things about Valgrind

• it is slow

• serializes threads

• memcheck does not detect stack and global objects overruns

• cannot detect some kinds of undefined behaviors because it does not know as much
as the compiler

• program that is executed is different from the one fed to the valgrind

Good things about Valgrind

• it supports a huge number of architectures

• works out of the box - no recompilation needed

• handles the entire userland, including the third-party libraries

Tagging of Memory

• Hardware Assisted Address Sanitizer

• so far only clang on Aarch64

• tag pointer and associated memory block

Questions?

	Types of Errors
	Questions?

