
9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 1/12

How NOT to write
software

Common patterns that ruins everything

Michal Hrušecký
Michal@Hrusecky.net



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 2/12

Who am I?

Why should you trust me?
hobby programmer for about 20+ years

at least partly professional for 5+ years

package maintainer for 10+ years

You shouldn’t
Years of experience doesn’t mean squat.

Listen, evaluate and decide what sounds reasonable.



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 3/12

Package maintainer?
Why is maintaining package anyhow relevant to software development…

And why you should do it if you are just starting your career…

you don’t have time to learn everything
you have to fix problems with local knowledge

you’ll learn to debug alien code fast

you’ll learn that everybody makes mistakes
even well known projects contain beginner type mistakes

you’ll learn that you are actually not that bad developer
now that you have seen how everything is hacked together



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 4/12

Try to solve the real problems
And start with the one you set out to solve.

If writing mail client make sure it can send mails.

If editor, that it can edit files.

Scripting language and plugin system can wait.

Make it do something useful first.

No, your TODO list application doesn’t need 3D Engine first.



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 5/12

Is "Agile" still a thing?
Plenty of competing ways how to do it.

Good side:
managers approved way to release early, release often

Bad side:
mostly excuse for managers to have more meetings

excuse for management not to have specification of the problem

trainings available



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 6/12

Reinventing the wheel
There is plenty of libraries ready to solve your problems

Use them wisely. There is a fine line.

Don’t reinvent everything

Don’t drag in some zombies

Try to avoid dragging in huge libraries to do simple stuff



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 7/12

When in Rome
…do as the Romans do

respect the style of your language

don’t try to bend it your way

use the language best practices

use the default build system
autotools, cmake for C/C++

setuptools for python

…



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 8/12

The right amount of knowledge
Do you know…

every aspect of your language?

every aspect of your OS?

all possible side-effects of some operation?

how to make compiler do your bidding?
Good for you, but do not use it.

Stick to the well known facts.

Using everything makes you a jerk, not a good programmer.



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 9/12

Use the right language
Some languages are better suited, some you should avoid.

The wrong language is:

awesome language you just started learning

if you work in a team where nobody knows it

Java most of the time
The right language is:

one you are comfortable with

your peers are comfortable with as well

has support for what you want to do



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 10/12

Optimize the right stuff
You want to make sure that the part that most time is spend in can be
done as fast as possible.

You are going to spend the most time maintaining the code. At least in
the beginning.

And whe somebody tries to use it, you are gonna throw away most of it
anyway.



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 11/12

Document the right stuff
Documenting the obvious is meaningless.

Documenting the complex part sometimes as well.

// If it was hard to write, it should be hard to read. 

 

// Here be dragons. Thou art forewarned 

 

// I'm really proud of the following lines.

Try to write code that is so clear that it doesn’t need documentation.



9. 10. 2018 How NOT to write software

file:///home/michal/share/writing_software/writing_software.html#title-slide 12/12

Few quotes to end with
Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.


