
Network change management 
and continuous integration in 

the age of NetDevOps

MATYÁŠ PROKOP





Agenda

• Blah Blah Blah Infrastructure as Code Blah Blah Blah

• Live Demo



What is the Infrastructure as Code?

Infrastructure as code (IaC) is the process of managing and provisioning 
computer data centers (or campus – Matyas 10/2019) through machine-
readable definition files, rather than physical hardware configuration or 

interactive configuration tools.

Source: Wiki



Process inspired by modern software 
development practices

• Version control provides higher quality and change control tracking
• Automatic testing and deployment
• Fast deployment
•Well established process
• You can put fancy stickers on your laptop



Infrastructure as code

• Change and source control
• GitLab, GitHub, BitBucket

• Automation tools
• Ansible, Terraform, Chief, Puppet

• APIs
• Lots of APIs!

• Staging or testing environment
• Continuous Integration and Delivery (CI/CD) Pipeline
• GitLab CI/CD, Jenkins



Change and 
source control • GitLab will be your single source of truth

• Storing any configuration preferably in format like 
YAML
• Plan, code, test and deploy the code from single 
repository
• CI/CD Pipeline integration 
• Alternatives: GitHub, BitBucket



Automation tools
• Ansible will allow consistent configuration
• Ansible modules provides more flexibility
• Ansible is agentless
• Strong community



Rest APIs
• Using of Ansible is preferred but APIs are 
sometimes needed
• Calling APIs via Python scripts



Staging 
environment



Staging 
environment • Hardware staging environment

• Virtual staging environment
• GNS3, VIRL, Eve-ng
• Vagrant

• Staging or testing tenant environment
• ACI Tenant



CI/CD Pipeline • Essential part
• Only way to merge any changes into repository
• Increase the speed and quality of changes
• Pushing the configuration from the repository to 
the staging and production environment

Git 
Push

Peer 
Review Repo Staging Peer 

Review Production





Automated testing Staging environment

Deployment checks

Code in production

Pushing the code to the repository

Git Push Peer 
Review Repo Staging Peer 

Review Production



Automated testing Staging environment

Deployment checks

Code in production

Code validation

Git Push Peer 
Review Repo Staging Peer 

Review Production



Automated testing Staging environment

Deployment checks

Code in production

Code is stored in the repository

Git Push Peer 
Review Repo Staging Peer 

Review Production



Automated testing Staging environment

Deployment checks

Code in production

Running the code against the staging environment

Git Push Peer 
Review Repo Staging Peer 

Review Production



Automated testing Staging environment

Deployment checks

Code in production

Deploying the code in the production

Git Push Peer 
Review Repo Staging Peer 

Review Production



Automated testing Staging environment

Deployment checks

Code in production

Code deployed

Git Push Peer 
Review Repo Staging Peer 

Review Production



Live demo



Live demo

+ +



Live demo – ACI Logical Design

Legend
Tenant = virtual environment
EPG = End Point Group
VRF = Virtual Route Forwarding

Natilik ACI

Tenant: natilik

VRF: production

EPG: dca_application

EPG: dcb_data

EPG: hal9000

Tenant: natiliksc

VRF: natiliksc

EPG: backplane

EPG: frontend

……..

BD: mysql

BD: apache

Tenant: 
natiliksc_staging

VRF: natiliksc

EPG: backplane

EPG: frontend

BD: mysql

BD: apache



Stay in touch

Matyas Prokop
matyas.prokop@gmail.com
email@matyasprokop.com

@maty0609

https://git.matyasprokop.com


