
The "schedutil" frequency scaling
governor

Giovanni Gherdovich October 7th, 2018

ggherdovich@suse.cz

2

Agenda

> schedutil intro

> frequency scale invariance

> PELT

> util_est

3

Questions, anytime

4

terminology

> freq scaling governor:

 > algorithm (“policy”) to decide which freq to run next

 > eg: ondemand, powersave (intel specific), schedutil, ...

> freq scaling driver:

 > communicates to the hardware the desired setting

 > eg: acpi_cpufreq, pcc_cpufreq, intel_pstate, intel_cpufreq, ...

5

terminology

What am I running?

$ cpupower frequency-info --driver

$ cpupower frequency-info --policy

$ cpupower frequency-info --governors

6

Agenda

> schedutil intro

> frequency scale invariance

> PELT

> util_est

7

schedutil

> generic frequency governor (works with multiple drivers)

> works from scheduler data (PELT utilization signal)

> utilization signal is per-task (migrates with task_struct)

> merged in v4.7 (April 2016)

> compare with intel_pstate/powersave: CPU utilization data from
APERF / MPERF registers

8

Agenda

> schedutil intro

> frequency scale invariance

> PELT

> util_est

9

frequency scale invariance

Tasks appear larger if CPU is running slower.

 ⇨ dividing current freq by max freq gives
invariant utilization metric

10

frequency scale invariance

> Utilization, Load: arbitrary cost functions

> dimensionless quantities

> utilization should be between 0 (empty) and 1 (full)

> we want to define them per-task

dumb example: utilization of a task is the percentage of running time
(se->on_cpu) during last millisecond.

 ⇨ lower if CPU runs faster
 ⇨ ill-defined, meaningless

11

frequency scale invariance

solution: multiply dumb utilization by freqcurr / freqmax

> still dumb, but scale invariant!

> merged for ARM in v4.15 (January 2018)

new problem: x86 doesn’t have freqmax, turbo states availability

depends on neighboring cores

> patch floating around, dynamic discovery of freqmax reading the

APERF and MPERF registers

12

frequency scale invariance

> schedutil formula

 > utilization is frequency invariant (ARM):

 > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqmax * util

freqnext = 1.25 * freqcurr * util

13

frequency scale invariance

> schedutil formula

 > utilization is frequency invariant (ARM):

freqnext = 1.25 * freqmax * util

14

frequency scale invariance

> schedutil formula

 > utilization is frequency invariant (ARM):

 > rationale: make freqnext proportional to util

 > since 1.25 * 0.8 is 1, when util is 0.8 sets freq to max

 > we consider 80% a high utilization, so better speed up

 > note: after switching freq, utilization remains the same

freqnext = 1.25 * freqmax * util

15

frequency scale invariance

> schedutil formula

 > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqcurr * util

16

frequency scale invariance

> schedutil formula

 > utilization is not frequency invariant (x86):

 > derived from the invariant case, replace

 > approximation: utilraw is a PELT sum, each term needs

 to be scaled (with freqcurr at that time)

 > util
raw

 == 0.8 is the tipping point: less than 0.8 and freq goes

 down, more than 0.8 and freq goes up

freqnext = 1.25 * freqcurr * util

utilinv = utilraw * freqcurr / freqmax

17

frequency scale invariance

> metaphore for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the
new utilization U’ = W / F’ is 0.8.

18

frequency scale invariance

> metaphore for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the
new utilization U’ = W / F’ is 0.8.

0.8 = W / F’

 ⇨ F’ = 1.25 * W

 ⇨ F’ = 1.25 * F * U

19

frequency scale invariance

> metaphore for the non invariant case: bucket of water

 > water bucket: F is total volume, W is water volume

 > freq switching: F is current frequency, W is instructions per

 second (“useful work”).

 > if F is cycles per second, U = W / F would give instruction

 per cycle (IPC). Maybe?

20

frequency scale invariance

> schedutil formula

 > utilization is frequency invariant (ARM):

 > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqmax * util

freqnext = 1.25 * freqcurr * util

21

Agenda

> schedutil intro

> frequency scale invariance

> PELT

> util_est

22

Per Entity Load Tracking (PELT, v3.8, Oct. 2012)

> “PELT” is a property of struct sched_entity
> recursively defined:

 > “PELT” on groups and runqueues is the sum of “the PELT’s”

 of their constituents

 > “PELT” on tasks is the sum of past runnable (load) or running

 (util) times(see next slides)

> “PELT” is actually two numbers:

 > load_avg, used by for eg. load balancing

 > util_avg, used for eg. in schedutil

 > almost identical formula, but runnable time replaced by

 running time

23

Per Entity Load Tracking (PELT)

> load_avg and util_avg are our cost functions

 > partition time into segments of 1024 μss

 > segments aligned with task creation

util=
R0+R1 y+R2 y2

+R3 y3
+ ...+RN yN

1024 (1+ y+ y2
+ y3

+...+ yN
)

> y = 0.9785
> R

i
 is time (μss) in segment i …

 > util_avg: … the task was running
 > load_avg: … the task was runnable
> dimensionless
> util

new
 = util

old
 * y + R

0

24

Per Entity Load Tracking (PELT)

#!/bin/bash

for i in {1..10} ; do

 N=0

 while true ; do

 ((N++))

 done &

done

$ taskset --cpu-list 0 ./heavy.sh
$ echo t > /proc/sysrq-trigger

25

Per Entity Load Tracking (PELT)

cfs_rq[0]:/

...

.nr_running : 10

...

.load_avg : 10239

.runnable_load_avg : 10239

.util_avg : 1023

.util_est_enqueued : 10

...

> toplevel runqueue for cpu#0
> 1024 is 1 in fixed point arith
> load_avg unbound
> util_avg bound by 1024…
 > why?

26

Per Entity Load Tracking (PELT)

util=
R0+R1 y+R2 y2

+R3 y3
+ ...+RN yN

1024 (1+ y+ y2
+ y3

+...+ yN
)

27

Per Entity Load Tracking (PELT)

cat /proc/$$/sched

bash (15127, #threads: 1)

...

se.avg.load_sum : 629

se.avg.runnable_load_sum : 629

se.avg.util_sum : 620282

se.avg.load_avg : 0

se.avg.runnable_load_avg : 0

se.avg.util_avg : 0

se.avg.last_update_time : 199010878882816

se.avg.util_est.ewma : 8

se.avg.util_est.enqueued : 0

...
peek at a process’ PELT data

28

Agenda

> schedutil intro

> frequency scale invariance

> PELT

> util_est

29

util_est, improved responsiveness

> signal built on top of PELT

> computed only for tasks and top level runqueues

> stores util_avg at dequeue, before it decays

> merged in v4.17 (March 2018)

> schedutil now consumes max(util_est, util_avg)

30

util_est, improved responsiveness

util_est is a struct of two numeric fields:

> enqueued:

 > for a task: util_avg at the time of last dequeueing

 > for a cfs_rq: for each task take max(enqueued, ewma) and sum

> ewma:

 > for a task: Exponentially Weighted Moving Average of past

 util_avg’s at dequeue

 > keeps memory of last few dequeues, “ignores” false restarts

31

Thanks!

> PELT (2012) introduces per-task util tracking in the scheduler

> schedutil (2016) uses PELT data to drive freq scaling

> util_est “caches” util data from previous dequeues to make PELT

 ramp up faster

 > and considerably improves schedutil

> schedutil re-claims a privileged position for the OS in freq scaling

 > the hardware is oblivious of tasks, migrations, etc

> schedutil requires freq-invariant utilization

32

Extras

33

util_est, improved responsiveness

eliminating recursion:

re-labeled terms so that:

k = 0 is last dequeueing,

k = 1 is penultimate dequeuing,

k = 2 is two dequeueings before the last, etc

ewmat = 0.25 * util_avgt + 0.75 * ewmat-1

ewmanow = 0.25 * Σk{0.75
k * util_avgk}

0.75 ^ 2.409 = 0.5
 ⇨ half life of weight is between

 2 and 3 dequeuing (memory span)

34

P-States facts (x86)

35

P-States facts (x86)

> all cores in a package share same voltage V

> running at lower freq than possible (given V) is inefficient

 ⇨ all cores (non idle) share the
same clock freq F (!?!)

 ⇨ F is the max requested by OS for
any of the (non idle) cores

36

benchmarks: vanilla 4.17

MMTESTS CONFIG 2 x BROADWELL
80 CORES

1 x SKYLAKE
8 CORES

UNIT BETTER IF

db-pgbench-timed-ro-small pgbench 1 1.01 TRANS_PER_SECOND higher

io-dbench4-async dbench4 1.06 1 TIME_MSECONDS lower

network-netperf-unbound netperf-tcp 1.02 1 MBITS_PER_SECOND higher

netperf-udp 0.99 0.99 MBITS_PER_SECOND higher

network-sockperf-unbound sockperf-tcp-throughput 1.97 0.99 MBITS_PER_SECOND higher

sockperf-tcp-under-load 1.02 0.96 TIME_USECONDS lower

sockperf-udp-throughput 1 0.99 MBITS_PER_SECOND higher

sockperf-tcp-under-load 0.83 0.97 TIME_USECONDS lower

scheduler-unbound hackbench-process-pipes 0.99 0.99 TIME_SECONDS lower

hackbench-process-sockets 0.99 0.99 TIME_SECONDS lower

hackbench-thread-pipes 1.01 1.02 TIME_SECONDS lower

hackbench-thread-sockets 0.96 0.99 TIME_SECONDS lower

pipetest 1.89 2 TIME_USECONDS lower

workload-kerndevel gitcheckout 1.03 1.02 TIME_SECONDS lower

kernbench 1.08 1.04 TIME_SECONDS lower

workload-schbench schbench 1.09 1.07 TIME_USECONDS lower

workload-shellscript gitsource 1.02 1.39 TIME_SECONDS lower

intel_pstate/powersave VS intel_cpufreq/schedutil

statistically significant meh statistically significant

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

