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Questions, anytime
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terminology

> freq scaling governor:

    > algorithm (“policy”) to decide which freq to run next

    > eg: ondemand, powersave (intel specific), schedutil, ...

> freq scaling driver:

   > communicates to the hardware the desired setting

   > eg: acpi_cpufreq, pcc_cpufreq, intel_pstate, intel_cpufreq, ...
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terminology

What am I running?

$ cpupower frequency-info --driver

$ cpupower frequency-info --policy

$ cpupower frequency-info --governors
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schedutil

> generic frequency governor (works with multiple drivers)

> works from scheduler data (PELT utilization signal)

> utilization signal is per-task (migrates with task_struct)

> merged in v4.7 (April 2016)

> compare with intel_pstate/powersave: CPU utilization data from 
APERF / MPERF registers
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frequency scale invariance

Tasks appear larger if CPU is running slower.

 ⇨ dividing current freq by max freq gives 
invariant utilization metric
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frequency scale invariance

> Utilization, Load: arbitrary cost functions

> dimensionless quantities

> utilization should be between 0 (empty) and 1 (full)

> we want to define them per-task

dumb example: utilization of a task is the percentage of running time 
(se->on_cpu) during last millisecond.

 ⇨ lower if CPU runs faster
 ⇨ ill-defined, meaningless 
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frequency scale invariance

solution: multiply dumb utilization by freqcurr / freqmax

> still dumb, but scale invariant!

> merged for ARM in v4.15 (January 2018)

new problem: x86 doesn’t have freqmax, turbo states availability 

depends on neighboring cores

> patch floating around, dynamic discovery of freqmax reading the 

APERF and MPERF registers
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frequency scale invariance

> schedutil formula

   > utilization is frequency invariant (ARM):

   > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqmax * util

freqnext = 1.25 * freqcurr * util
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frequency scale invariance

> schedutil formula

   > utilization is frequency invariant (ARM):

   

freqnext = 1.25 * freqmax * util



14

frequency scale invariance

> schedutil formula

   > utilization is frequency invariant (ARM):

       > rationale: make freqnext proportional to util

       > since 1.25 * 0.8 is 1, when util is 0.8 sets freq to max

       > we consider 80% a high utilization, so better speed up

       > note: after switching freq, utilization remains the same

freqnext = 1.25 * freqmax * util
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frequency scale invariance

> schedutil formula

   > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqcurr * util
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frequency scale invariance

> schedutil formula

   > utilization is not frequency invariant (x86):

       > derived from the invariant case, replace

       > approximation: utilraw is a PELT sum, each term needs

          to be scaled (with freqcurr at that time)

       > util
raw

 == 0.8 is the tipping point: less than 0.8 and freq goes

          down, more than 0.8 and freq goes up

freqnext = 1.25 * freqcurr * util

utilinv = utilraw * freqcurr / freqmax
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frequency scale invariance

> metaphore for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of 
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the 
new utilization U’ = W / F’ is 0.8.
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frequency scale invariance

> metaphore for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of 
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the 
new utilization U’ = W / F’ is 0.8.

0.8 = W / F’

 ⇨ F’ = 1.25 * W

 ⇨ F’ = 1.25 * F * U
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frequency scale invariance

> metaphore for the non invariant case: bucket of water

   > water bucket: F is total volume, W is water volume

   > freq switching: F is current frequency, W is instructions per

      second (“useful work”).

   > if F is cycles per second, U = W / F would give instruction

      per cycle (IPC). Maybe?
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frequency scale invariance

> schedutil formula

   > utilization is frequency invariant (ARM):

   > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqmax * util

freqnext = 1.25 * freqcurr * util
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Per Entity Load Tracking (PELT, v3.8, Oct. 2012)

> “PELT” is a property of struct sched_entity
> recursively defined:

   > “PELT” on groups and runqueues is the sum of “the PELT’s”

      of their constituents

   > “PELT” on tasks is the sum of past runnable (load) or running

      (util) times(see next slides)

> “PELT” is actually two numbers:

   > load_avg, used by for eg. load balancing

   > util_avg, used for eg. in schedutil

      > almost identical formula, but runnable time replaced by

         running time
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Per Entity Load Tracking (PELT)

> load_avg and util_avg are our cost functions

   > partition time into segments of 1024 μss

   > segments aligned with task creation

util=
R0+R1 y+R2 y2

+R3 y3
+ ...+RN yN

1024 (1+ y+ y2
+ y3

+...+ yN
)

> y = 0.9785
> R

i
 is time (μss) in segment i …

   > util_avg: … the task was running
   > load_avg: … the task was runnable
> dimensionless
> util

new
 = util

old
 * y + R

0
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Per Entity Load Tracking (PELT)

#!/bin/bash

for i in {1..10} ; do

        N=0

        while true ; do

                ((N++))

        done &

done

$ taskset --cpu-list 0 ./heavy.sh
$ echo t > /proc/sysrq-trigger 
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Per Entity Load Tracking (PELT)

cfs_rq[0]:/

...

.nr_running               : 10      

...

.load_avg                 : 10239

.runnable_load_avg        : 10239

.util_avg                 : 1023

.util_est_enqueued        : 10

...

> toplevel runqueue for cpu#0
> 1024 is 1 in fixed point arith
> load_avg unbound
> util_avg bound by 1024…
   > why?
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Per Entity Load Tracking (PELT)

util=
R0+R1 y+R2 y2

+R3 y3
+ ...+RN yN

1024 (1+ y+ y2
+ y3

+...+ yN
)
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Per Entity Load Tracking (PELT)

# cat /proc/$$/sched

bash (15127, #threads: 1)

-----------------------------------------------------

...

se.avg.load_sum                 :                 629

se.avg.runnable_load_sum        :                 629

se.avg.util_sum                 :              620282

se.avg.load_avg                 :                   0

se.avg.runnable_load_avg        :                   0

se.avg.util_avg                 :                   0

se.avg.last_update_time         :     199010878882816

se.avg.util_est.ewma            :                   8

se.avg.util_est.enqueued        :                   0

...
peek at a process’ PELT data
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util_est, improved responsiveness

> signal built on top of PELT

> computed only for tasks and top level runqueues

> stores util_avg at dequeue, before it decays

> merged in v4.17 (March 2018)

> schedutil now consumes max(util_est, util_avg)
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util_est, improved responsiveness

util_est is a struct of two numeric fields:

> enqueued:

   > for a task: util_avg at the time of last dequeueing

   > for a cfs_rq: for each task take max(enqueued, ewma) and sum

> ewma:

   > for a task: Exponentially Weighted Moving Average of past

      util_avg’s at dequeue

      > keeps memory of last few dequeues, “ignores” false restarts
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Thanks!

> PELT (2012) introduces per-task util tracking in the scheduler

> schedutil (2016) uses PELT data to drive freq scaling

> util_est “caches” util data from previous dequeues to make PELT

   ramp up faster

   > and considerably improves schedutil

> schedutil re-claims a privileged position for the OS in freq scaling

   > the hardware is oblivious of tasks, migrations, etc

> schedutil requires freq-invariant utilization
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Extras
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util_est, improved responsiveness

eliminating recursion:

re-labeled terms so that:

k = 0 is last dequeueing,

k = 1 is penultimate dequeuing,

k = 2 is two dequeueings before the last, etc

ewmat = 0.25 * util_avgt + 0.75 * ewmat-1

ewmanow = 0.25 * Σk{0.75
k * util_avgk}

0.75 ^ 2.409 = 0.5
 ⇨ half life of weight is between

    2 and 3 dequeuing (memory span)
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P-States facts (x86)
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P-States facts (x86)

> all cores in a package share same voltage V

> running at lower freq than possible (given V) is inefficient

 ⇨ all cores (non idle) share the 
same clock freq F (!?!)

 ⇨ F is the max requested by OS for 
any of the (non idle) cores
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benchmarks: vanilla 4.17

MMTESTS CONFIG 2 x BROADWELL
80 CORES

1 x SKYLAKE
8 CORES

UNIT BETTER IF

db-pgbench-timed-ro-small pgbench 1 1.01 TRANS_PER_SECOND higher

io-dbench4-async dbench4 1.06 1 TIME_MSECONDS lower

network-netperf-unbound netperf-tcp 1.02 1 MBITS_PER_SECOND higher

netperf-udp 0.99 0.99 MBITS_PER_SECOND higher

network-sockperf-unbound sockperf-tcp-throughput 1.97 0.99 MBITS_PER_SECOND higher

sockperf-tcp-under-load 1.02 0.96 TIME_USECONDS lower

sockperf-udp-throughput 1 0.99 MBITS_PER_SECOND higher

sockperf-tcp-under-load 0.83 0.97 TIME_USECONDS lower

scheduler-unbound hackbench-process-pipes 0.99 0.99 TIME_SECONDS lower

hackbench-process-sockets 0.99 0.99 TIME_SECONDS lower

hackbench-thread-pipes 1.01 1.02 TIME_SECONDS lower

hackbench-thread-sockets 0.96 0.99 TIME_SECONDS lower

pipetest 1.89 2 TIME_USECONDS lower

workload-kerndevel gitcheckout 1.03 1.02 TIME_SECONDS lower

kernbench 1.08 1.04 TIME_SECONDS lower

workload-schbench schbench 1.09 1.07 TIME_USECONDS lower

workload-shellscript gitsource 1.02 1.39 TIME_SECONDS lower

intel_pstate/powersave VS intel_cpufreq/schedutil

statistically significant                meh                 statistically significant
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