Web application performance

A Lecture for LinuxDays 2017

by
Ing. Tomas Vondra
Cloud Architect at

AT CLOUD

Capacity planning

* Marketing gives you: estimate of the
number of customers and its trend

— > You need to translate it to the technical view
« How many clicks per second does a user produce?
 How much is it in number of connections?
 What is it written in?

« How much power does it need?
 How much power do the servers have?

« Will there be room for usage spikes? And growth?
— > How many servers do we need
— (or) how much will the cloud cost

Theoretical approach

« Queueing theory (T. hromadné obsluhy)
— Founded by Erlang, beginning of 20. century
— Models problems in telecom, traffic, industry

— Service system:
 Request sources — s
Input process — intensity A, rate A [1/s]
Queue — Q — if none -> system with loss
Service process — N servers, service demand D [s]
Output stream — intensity Y, rate u [1/s]

Rejected stream — intensity R — if queue full
— Intensity = rate * service demand; [erl = mostly minutes / hour]

Service system

Input stream Output stream

> Queue
S Offered load

A

Source

>

Transferred load
Y

Reject stream | Rejected load
v R

Model properties

 Arrival and service: stochastic processes

 Conditions:

— Stationary — stable in time, system is in a
statistical equilibrium -> input and output
Intensities match

— Ordinary — one request at a time, only
Interarrival time needs to be modeled

— Independent — arrival and service processes
are independent

Kendall's classification

« Kendall introduced A/B/N(/M) notation
— A: statistical distribution of arrival process
— B: statistical distribution of service process
— N: number of service lines
— M: size of queue - not compulsory

 Where A and B may be:
— M: Markovian, Poisson process, exp. Dist
— D: Deterministic or Uniform
— G: General
— Ek: Erlang with parameter k

Poisson process

Mostly M for Markovian is used.

Assumes a Poisson process

— Memoryless — arrival of one request is independent of
others. Modelled by exp dist. of interarrival times.

» Then the input rate [req/s] will have Poisson dist.
« The load [busy time/hour] will have Erlang dist.

If there the request are more grouped
— l.e. the distribution has higher dispersion
— In simulation, use Pareto or Welibull dist.

Then with the same average arrival rate, the
average waiting time will be higher.

Exponential distribution

CDF: f(tA) =Ae*t PDF:F(t;A)=1-e M

1.00
ll.

.00 4\ T TTCbF e

1
\ -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Response time

Poisson distribution

fln.t) =e ™ I"M"'I ,n=12.. Fin,t) = Z flk,t)
i E—i

1.10

———-CDF
pdi i

Parcentile
=
=

Q.10 4

System types

* Open system
— Number of customers not known

— Characterized by arrival rate

......

......

database server

arriving | o - completing
transactions - v , transactions

System types

» Closed system
— Fixed number of customers

— Alternating between two states
« Thinking, Requesting service

Operational Analysis

« Analyzing (part of) a queuing system as a "black
box", with one input for jobs and one output for
Jobs

« The internal structure of the system (queuing
network) is unknown

— The distribution of inter-arrival times is unknown
— The service times distribution i1s unknown

« Can be used to derive simple relationships,
mostly between mean values of the system’s
parameters (not distributions of e.g. que.lengths)

Utilization

U=Db/T
— Utilization is the fraction of busy time to total
« Dimensionless [s/s]

A=X=a/T=d/T

— Arrival rate=throughput is the number of
arriving=departing jobs per time [1/s]

s=b/d
— Service time Is busy time per job [s]
U=As=Xs

alsos=1/u->U=A/p

— If A > p — utilization/intensity > 1, system unstable

U — utilization

X — throughput
S — service time
A — arrival rate
V — visit rate

D — service
demand /min time
N — requests in
system

R — response
time

M — thinking
clients

Z — think time

Utilization Law:
=X, =5 = A, = 5

Forced Flow Law:
X,=V; = Xy

Service Demand Law:
D; =V, x5, =0U/Xy
Little’s Law:
N=X=xH
Interactive Response Time Law

M

jr _
_T”

z

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

Little’s_ Law

=,
.-"'--.l- o H"'\-\.
.-'-l- = .\'\'.\.\.
& = ,
-~
o o,
..-' .\'"".\.
iy
b
=
'H.: - '.-'
g et
_'". L1 T u
- s ', .-._
A T -
L .-"- '\'-\,
¥ [} L
s 4
T F -~
. " 4 - .ﬂ: e
5 - A " -
"-'H. _.-"'H.
£, .-"- y FA A
.__"'- R & * f & y F o
LY 5, & i
% F d
", ’ 4
.\.\'\'\.\.\. -'-
& e
B - i
.\'-\._ s Py
--_.J'-. - .-..-'
.-_.-'
N, /
rd
. &
I \ Vi
i, &
r
.-"- * Fd
o+ .l_-"
& I

mean number _ average departure
in the pub = timeatthepub X rate

Little’s Law

« Works with averages -> any steady-state
* On server only -> utilization law
* On server+gueue -> computes queue length

IBS8.

averace number of departure rate average time spent
— o4
customers in a box from the box in the box.

Interactive Response Time Law

-a z |
client workstations = . |

5 .

. -
K o
- .
-,
" nom —
-~
= -
b -

Interactive Xo
" Database

System

- H -

M
R — — Z.
Xo

Latency vs. throughput

(£=0)

Metric

Asymptotics

* In previous graph, vertical line — optimum
* To the left — light load — underutilized

— Throughput scales linearly by number of users, limited by sum of
demands N

— Latency constant R
« To the right — heavy load — overutilized

— Throughput constant, limited by bottleneck resource

— Latency scales linearly

]
Xpg = -,
"= nax 1D}

;"l..'_ "H'I,.'_ Iy
R = TL‘I = -] = max | N x max {1}, ZLT, :

B 1 A
max | L} Z"" D,
=

1min =1

Open system latency/throughput

R(X]
10 -

M/M/1

* No longer operational analysis (G/G/*)

— We need the memoryless property of exp.dist.

— PASTA: Poisson Arrivals See Time Averages

« Distribution of the residual time until the next arrival is also
exponentially distributed with the same parameter | as the
time between consecutive arrivals.

« Distribution of the residual service time Is the same as that of
the service time.

« R=0QS + S —avg. response time Is avg. service
time of jobs in the queue + the job being served

— Arriving job sees Q jobs ahead, no matter how much
of the service time remains for the job(s) being served

M/M/1

« Using Little’s law on Q
- R=(AR)S +S
->R=S/(1-AS)

« Using Little’s law on AS

->R=S/(1-U)
— Residence time depends on utilization.

» Stretch factor: (on basic service demand)
~F=R/S=1/(1-9)=Q/mU

 Where Q is Unix load average, m number of
CPUs, U percent CPU busy

Open system latency/utilization

20

18

f— — f—
M2 = o]
1 1 1

Normalized Residence Time (R/S)
=

T T T T T T T T T 1
0.00 010 0.20 0.30 0.40 0.50 0.60 070 0.80 0.90 1.00
Utilization

Multiserver latency/utilization

16
14 - ——

% MM/

= | |- M/M/4

@ 127 —— — - M/M/16

E M/M/B4

TR

(k]

L

=

(k]

T 8

]

(k]

o

- 61

k]

N

o i

£ -

S e
2' _ _'____,_,-- - - ,..-—""_
D 1 1 1 1 1 1 1 1 1
000 010 020 030 040 050 060 070 080 090

Utilization

Markov chains

« Why does the queue behave like this?

— Birth-death Markov process

« States 0..J+1 (J - queue capacity)
— Last state blocking
— Arrival changes state to n+1, departure to n-1

— Probability of n jobs in the system p,=(1-U)Un"
— Utilization U =1 - p,
— Mean queue length E[n] = £ 'np,,= U / (1-U) .

A A A A A A
OICIORIOIOION
.u 1 [1 ! !

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-spring-2006/tools/

X,

g 3 Siuglf_- }*ealiz?tiun of stochastic processes —
Lp(7). A1), Xol(0). L0), XA, o)
7 Service system N =1.R=1 £
6 - o . [r—
X p(#) - Process of arrivals
4
F
— FI
5
0 | |
lfpl Ip2 lfpi 3:1:4‘ {1:5 rpﬁ lfp’.-' }:LJS
4 X.(f) — Service process Xi(f) = XA1) + (1)
X(1) X,(f) — Process of service in service lines X{7) — Process of waiting
Blocking time of ser%r 1ec
— P S —
N+R=2 -\ .. < e —
! | —
pl Ip2 Tol Ip3 I
Busy period iz IB

X:(f) — Service process

XA1) = (1) + %(7)

X:(7) X,(7) — Process of service in service lines X{7) — Process of waiting

Blockimg time of service

N ——

Vstemfese
P

| 1 ﬁ_ —
0
121 rbl_‘ lo Tp_li,‘ Io2 ﬁu‘- FFJF"ljtuj
Busy perod 1z IB
Lolh)
3] .
X ,(f) = Output process
2
1
0 |
2=0 fol fo2 To3 {
< >
XA5) 4 X(1) - Process of lost (refused) arrivals [—

I-; -2 I3

PASTA and splitting

 The memoryless property allows splitting
and joining of request flows

— Each flow Is a series of totally random events
— Splits defined by probabillities

« Jackson’s theorem translates to visit rates

— Allows construction of product-form queueing
networks

Ay
}.- + }.—2 T ;'».'_z = ;‘v }'v
b / =

Queueing networks

Mean Value Analysis

« Basis of QN solving tools

o R,(N)=5,[1+0,(N -]

* QI(n) — average number in gueue | with N
total jobs

« Nth job upon arrival sees the system with
N-1 jobs
— > |terative algorithm
— Starts with Qi(0)=0, n=1 until n=N

Practical possibilities

* Profiling from server logs

— Also called Performance Monitoring

— Shows server load in the past (CPU, RAM,
network, number of processes, ..)

— Shows its periodicity, can do trend predictions

— Useful for existing applications to be migrated
to the cloud

— or as an estimate when done on a similar
application

A CPU utilization graph

Web - 0la - 2 CPU Utilization

22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:30
0O Mean CPU Current: 15.52 % Min: 3.02 % Max: 41.98 %

| CPUO Current: 19.02% Min: 4.00% Max: 44.99%
@ CPUL Current: 12.01 % Min: 2.02 % Max: 38.97 %
Daily (3 Minute Average)

Web - 0la - 2 CPU Utilization

O Mean CPU Current: 17.91 % Min: 2.50% Max: 46.40%
| (PO Current: 21.66% Min: 2.83% Max: 49.89 %
| CPUL Current: 14.16 % Min: 2.17 % Max: 52.53 %

Weeldy (30 Minute Average)

Web server statistics

» Apache has mod_status
— Reports concurrency and throughput

— Combined with CPU utilization
 Allows to compute service demand, i.e. LATENCY

« And to estimate maximum throughput
— (service demand should be constant unless overloaded)

Tools

» Estimation of load profile from search
engine statistics
— Useful when marketing estimates the number

of users and you need to know when they'll be
accessing the site

— It will give you the time profile, but not the
actual amount of load

— Avallable from search engine term statistics or
some click counter providers

A graph from Google Insights

.I_.-": | | B .- i
| | R
A R Y B P A,
A A M N VAR "4
- i --‘I — —.l-i_ 1 'l:-H.H_.I-I.I. :'- - g b — —
| | |
(14 2006 200z 2010

Load testing

Good if you already have the application
— Or a prototype, or something similar to test

Will give you the answer to:

— How much CPU/RAM does an app this complex written in this
language need?

— How many requests per second does it give on this particular
server?

Will give you the possibility to optimize the server
You'll need to know the app's usage scenarios

— To construct a good testing script/walk through the site
— To be able to translate numbers of users to requests/s

Load testing tools

» httperf — made by HP, quite old

— Simulates an open system
* You give number of requests/s and a script

« Returns number of failures and timeouts
— When low enough, the system can sustain the offered load
— Timeout needs to be set reasonably
» max 8s for whole page load is recommended

— Used by ramping up load until failure
* Slege
— Simulates a closed system

* You give number of users and think time (+ script)

« Returns measured response times
— If below threshold (see above), system can sustain the load

Load testing tools

o JMeter

— closed system (I think)

— Strong side: proxy to capture scenarios

— Weak side: written in Java :-E
. better than using scenarios is to test indiv. request
types and construct a multiflow QN

* Tsung

— my favorite

— closed system, but can be convinced to do open
— written in Erlang - very accurate

— also has a proxy

— automatic ramp-up scripts possible

— Integrated graphical reporting with GnuPlot

Queueing network tools

o JMT (
— Can do several models, graphical, parametric or script input

— Logfile extraction, Markov Chain simulation, and Asymptotics
— Best for quick analyses, manual usage

* PDQ ()

— CoreisinC

— Is a library with binding for several languages
— Only script input

— Best for integration in your programs

http://jmt.sourceforge.net/
http://www.perfdynamics.com/Tools/PDQ.html

Conclusion — What to use

Small company — Webhosting or VM rent
Medium — Colocation + virtualization

Medium with good conditions — Own
servers + virtualization

Large — private or hybrid laaS

Web App. Startup — PaaS and have an
escape plan, or public laaS

Batch processing — public [aaS

Literature

Daniel A. Menascé, Virgilio A.F. Almeida,
Lawrence W. Dowdy: Performance by Design: Computer
Capacity Planning by Example.

Neil J. Gunther: Analyzing Computer System Performance
with Perl::PDQ Second Edition.

Tomas Kalibera, Vlastimil Babka: Modeling in Performance
Evaluation, lecture for Performance Evaluation, D3S
MFF CUNI, 2013.

Frantisek Krizovsky: Materialy k predmetu Teorie
provozniho zatizeni, kat. telekomunikaci FEL CVUT,
2012.

http://www.elektrorevue.cz/clanky/02019/index.html
http://www.elektrorevue.cz/clanky/02019/index.html

