Web application performance

A Lecture for LinuxDays 2017

by
Ing. Tomáš Vondra
Cloud Architect at

HOME AT CLOUD
Capacity planning

- Marketing gives you: estimate of the number of customers and its trend
 - > You need to translate it to the technical view
 - How many clicks per second does a user produce?
 - How much is it in number of connections?
 - What is it written in?
 - How much power does it need?
 - How much power do the servers have?
 - Will there be room for usage spikes? And growth?
 - > How many servers do we need
 - (or) how much will the cloud cost
Theoretical approach

• Queueing theory (T. hromadné obsluhy)
 – Founded by Erlang, beginning of 20. century
 – Models problems in telecom, traffic, industry
 – Service system:
 • Request sources – s
 • Input process – intensity A, rate λ [1/s]
 • Queue – Q – if none -> system with loss
 • Service process – N servers, service demand D [s]
 • Output stream – intensity Y, rate μ [1/s]
 • Rejected stream – intensity R – if queue full
 – Intensity = rate * service demand; [erl = mostly minutes / hour]
Service system

Source

Input stream

Offered load A

Queue

Server

Output stream

Transferred load Y

Reject stream

Rejected load R
Model properties

- Arrival and service: stochastic processes
- Conditions:
 - Stationary – stable in time, system is in a statistical equilibrium -> input and output intensities match
 - Ordinary – one request at a time, only interarrival time needs to be modeled
 - Independent – arrival and service processes are independent
Kendall’s classification

• Kendall introduced A/B/N(/M) notation
 – A: statistical distribution of arrival process
 – B: statistical distribution of service process
 – N: number of service lines
 – M: size of queue - not compulsory

• Where A and B may be:
 – M: Markovian, Poisson process, exp. Dist
 – D: Deterministic or Uniform
 – G: General
 – Ek: Erlang with parameter k
Poisson process

• Mostly M for Markovian is used.
• Assumes a Poisson process
 – Memoryless – arrival of one request is independent of others. Modelled by exp dist. of interarrival times.
 • Then the input rate [req/s] will have Poisson dist.
 • The load [busy time/hour] will have Erlang dist.
• If there the request are more grouped
 – i.e. the distribution has higher dispersion
 – In simulation, use Pareto or Weibull dist.
• Then with the same average arrival rate, the average waiting time will be higher.
Exponential distribution

CDF: \(f(t; \lambda) = \lambda e^{-\lambda t} \)

PDF: \(F(t; \lambda) = 1 - e^{-\lambda t} \)
Poisson distribution

\[f(n, t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \quad n = 1, 2, \ldots \]

\[F(n, t) = \sum_{k=0}^{n} f(k, t) \]
System types

• Open system
 – Number of customers not known
 – Characterized by arrival rate
System types

• Closed system
 – Fixed number of customers
 – Alternating between two states
 • Thinking, Requesting service
Operational Analysis

• Analyzing (part of) a queuing system as a "black box", with one input for jobs and one output for jobs

• The internal structure of the system (queuing network) is unknown
 – The distribution of inter-arrival times is unknown
 – The service times distribution is unknown

• Can be used to derive simple relationships, mostly between mean values of the system’s parameters (not distributions of e.g. que.lengths)
Utilization

- **U = b / T**
 - Utilization is the fraction of busy time to total
 - Dimensionless [s/s]
- **λ = X = a / T = d / T**
 - Arrival rate=throughput is the number of arriving=departing jobs per time [1/s]
- **s = b / d**
 - Service time is busy time per job [s]
- **U = λs = Xs**
- **also s = 1 / μ -> U = λ / μ**
 - If λ > μ – utilization/intensity > 1, system unstable
U – utilization
X – throughput
S – service time
λ – arrival rate
V – visit rate
D – service demand /min time
N – requests in system
R – response time
M – thinking clients
Z – think time

Utilization Law:

\[U_i = X_i \times S_i = \lambda_i \times S_i \] \hspace{1cm} (3.2.12)

Forced Flow Law:

\[X_i = V_i \times X_0 \] \hspace{1cm} (3.2.13)

Service Demand Law:

\[D_i = V_i \times S_i = U_i / X_0 \] \hspace{1cm} (3.2.14)

Little’s Law:

\[N = X \times R \] \hspace{1cm} (3.2.15)

Interactive Response Time Law

\[R = \frac{M}{X_0} - Z \] \hspace{1cm} (3.2.16)
Little’s Law

mean number in the pub = average time at the pub \times departure rate
Little’s Law

- Works with averages -> any steady-state
- On server only -> utilization law
- On server+queue -> computes queue length

average number of customers in a box = \text{departure rate from the box} \times \text{average time spent in the box}.
Interactive Response Time Law

\[R = \frac{M}{X_0} - Z. \]
Latency vs. throughput
Asymptotics

• In previous graph, vertical line – optimum
• To the left – light load – underutilized
 – Throughput scales linearly by number of users, limited by sum of demands
 – Latency constant
• To the right – heavy load – overutilized
 – Throughput constant, limited by bottleneck resource
 – Latency scales linearly

\[
X_0 \leq \frac{N}{\sum_{i=1}^{K} D_i}.
\]

\[
R = \frac{N}{X_0} \geq \frac{N}{\min \left[\frac{1}{\max \{D_i\}}, \frac{N}{\sum_{i=1}^{K} D_i} \right]} = \max \left[N \times \max \{D_i\}, \sum_{i=1}^{K} D_i \right].
\]
Open system latency/throughput
M/M/1

• No longer operational analysis (G/G/*)
 – We need the memoryless property of exp.dist.
 – PASTA: Poisson Arrivals See Time Averages
 • Distribution of the residual time until the next arrival is also exponentially distributed with the same parameter λ as the time between consecutive arrivals.
 • Distribution of the residual service time is the same as that of the service time.

• $R = QS + S$ – avg. response time is avg. service time of jobs in the queue + the job being served
 – Arriving job sees Q jobs ahead, no matter how much of the service time remains for the job(s) being served
M/M/1

• Using Little’s law on Q
 – \(R = (\lambda R)S + S \)
 – \(> R = S / (1 - \lambda S) \)
 • Using Little’s law on \(\lambda S \)
 – \(> R = S / (1 - U) \)
 – Residence time depends on utilization.

• Stretch factor: (on basic service demand)
 – \(F = R / S = 1 / (1 - S) = Q / mU \)
 • Where Q is Unix load average, m number of CPUs, U percent CPU busy
Open system latency/utilization
Multiserver latency/utilization

![Graph showing normalized residence time (R/S) vs. utilization for different multiserver configurations: M/M/1, M/M/4, M/M/16, and M/M/64. The graph illustrates how normalized residence time increases with utilization.]
Markov chains

• Why does the queue behave like this?
 – Birth-death Markov process
 • States 0..J+1 (J - queue capacity)
 – Last state blocking
 – Arrival changes state to n+1, departure to n-1
 – Probability of n jobs in the system $p_n = (1-U)U^n$
 – Utilization $U = 1 - p_0$
 – Mean queue length $E[n] = \sum_{n=0}^{J} np_n = \frac{U}{1-U}$
Single realization of stochastic processes

\[X_p(t), X_z(t), X_5(t), X_y(t), X_f(t), X_o(t) \]

Service system \(N = 1, R = 1 \)

\(X_p(t) \) - Process of arrivals

\(X_5(t) \) - Service process

\(X_y(t) \) - Process of service in service lines

\(X_f(t) \) - Process of waiting

Blocking time of service system \(t_{Eos} \)

Busy period \(t_B \)

N+R=2

1

0
$X_s(t)$ - Service process
$X_s(t) = X_f(t) + X_y(t)$
$X_y(t)$ - Process of service in service lines
$X_f(t)$ - Process of waiting

Blocking time of service system t_{Eos}

$N + R = 2$

Busy period t_B

$\mathcal{X}_o(t)$ - Output process

$\mathcal{X}_z(t)$ - Process of lost (refused) arrivals
PASTA and splitting

• The memoryless property allows splitting and joining of request flows
 – Each flow is a series of totally random events
 – Splits defined by probabilities
 • Jackson’s theorem translates to visit rates
 – Allows construction of product-form queueing networks
Queueing networks
Mean Value Analysis

• Basis of QN solving tools
• $R_i(N) = S_i[1 + Q_i(N - 1)]$
• $Q_i(n)$ – average number in queue I with N total jobs
• Nth job upon arrival sees the system with N-1 jobs
 – > Iterative algorithm
 – Starts with $Q_i(0)=0$, n=1 until n=N
Practical possibilities

- Profiling from server logs
 - Also called Performance Monitoring
 - Shows server load in the past (CPU, RAM, network, number of processes, ..)
 - Shows its periodicity, can do trend predictions
 - Useful for existing applications to be migrated to the cloud
 - or as an estimate when done on a similar application
A CPU utilization graph
Web server statistics

- Apache has mod_status
 - Reports concurrency and throughput
 - Combined with CPU utilization
 - Allows to compute service demand, i.e. LATENCY
 - And to estimate maximum throughput
 - (service demand should be constant unless overloaded)
Tools

• Estimation of load profile from search engine statistics
 – Useful when marketing estimates the number of users and you need to know when they'll be accessing the site
 – It will give you the time profile, but not the actual amount of load
 – Available from search engine term statistics or some click counter providers
A graph from Google Insights
Load testing

• Good if you already have the application
 – Or a prototype, or something similar to test

• Will give you the answer to:
 – How much CPU/RAM does an app this complex written in this language need?
 – How many requests per second does it give on this particular server?

• Will give you the possibility to optimize the server

• You'll need to know the app's usage scenarios
 – To construct a good testing script/walk through the site
 – To be able to translate numbers of users to requests/s
Load testing tools

• httpperf – made by HP, quite old
 – Simulates an open system
 • You give number of requests/s and a script
 • Returns number of failures and timeouts
 – When low enough, the system can sustain the offered load
 – Timeout needs to be set reasonably
 » max 8s for whole page load is recommended
 – Used by ramping up load until failure

• siege
 – Simulates a closed system
 • You give number of users and think time (+ script)
 • Returns measured response times
 – If below threshold (see above), system can sustain the load
Load testing tools

- **JMeter**
 - closed system (I think)
 - Strong side: proxy to capture scenarios
 - Weak side: written in Java :-(
 - better than using scenarios is to test indiv. request types and construct a multiflow QN

- **Tsung**
 - my favorite
 - closed system, but can be convinced to do open
 - written in Erlang - very accurate
 - also has a proxy
 - automatic ramp-up scripts possible
 - integrated graphical reporting with GnuPlot
Queueing network tools

- **JMT** *(Java Modelling Tools)*
 - Can do several models, graphical, parametric or script input
 - Logfile extraction, Markov Chain simulation, and Asymptotics
 - Best for quick analyses, manual usage

- **PDQ** *(Pretty Damn Quick)*
 - Core is in C
 - Is a library with binding for several languages
 - Only script input
 - Best for integration in your programs
Conclusion – What to use

- Small company – Webhosting or VM rent
- Medium – Colocation + virtualization
- Medium with good conditions – Own servers + virtualization
- Large – private or hybrid IaaS
- Web App. Startup – PaaS and have an escape plan, or public IaaS
- Batch processing – public IaaS

