Web application performance

A Lecture for LinuxDays 2017

by Ing. Tomáš Vondra Cloud Architect at

HOME AT CLOUD

Capacity planning

- Marketing gives you: estimate of the number of customers and its trend
 - > You need to translate it to the technical view
 - How many clicks per second does a user produce?
 - How much is it in number of connections?
 - What is it written in?
 - How much power does it need?
 - How much power do the servers have?
 - Will there be room for usage spikes? And growth?
 - > How many servers do we need
 - (or) how much will the cloud cost

Theoretical approach

- Queueing theory (T. hromadné obsluhy)
 - Founded by Erlang, beginning of 20. century
 - Models problems in telecom, traffic, industry
 - Service system:
 - Request sources s
 - Input process intensity A, rate λ [1/s]
 - Queue Q if none -> system with loss
 - Service process N servers, service demand D [s]
 - Output stream intensity Y, rate μ [1/s]
 - Rejected stream intensity R if queue full
 - Intensity = rate * service demand; [erl = mostly minutes / hour]

Service system

Model properties

- Arrival and service: stochastic processes
- Conditions:
 - Stationary stable in time, system is in a statistical equilibrium -> input and output intensities match
 - Ordinary one request at a time, only interarrival time needs to be modeled
 - Independent arrival and service processes are independent

Kendall's classification

- Kendall introduced A/B/N(/M) notation
 - A: statistical distribution of arrival process
 - B: statistical distribution of service process
 - N: number of service lines
 - M: size of queue not compulsory
- Where A and B may be:
 - M: Markovian, Poisson process, exp. Dist
 - D: Deterministic or Uniform
 - G: General
 - Ek: Erlang with parameter k

Poisson process

- Mostly M for Markovian is used.
- Assumes a Poisson process
 - Memoryless arrival of one request is independent of others. Modelled by exp dist. of interarrival times.
 - Then the input rate [req/s] will have Poisson dist.
 - The load [busy time/hour] will have Erlang dist.
- If there the request are more grouped
 - i.e. the distribution has higher dispersion
 - In simulation, use Pareto or Weibull dist.
- Then with the same average arrival rate, the average waiting time will be higher.

Exponential distribution

CDF: $f(t;\lambda) = \lambda e^{-\lambda t}$ PDF: $F(t;\lambda) = 1 - e^{-\lambda t}$

Poisson distribution

System types

- Open system
 - Number of customers not known
 - Characterized by arrival rate

System types

- Closed system
 - Fixed number of customers
 - Alternating between two states
 - Thinking, Requesting service

Operational Analysis

- Analyzing (part of) a queuing system as a "black box", with one input for jobs and one output for jobs
- The internal structure of the system (queuing network) is unknown
 - The distribution of inter-arrival times is unknown
 - The service times distribution is unknown
- Can be used to derive simple relationships, mostly between mean values of the system's parameters (not distributions of e.g. que.lengths)

Utilization

- U = b / T
 - Utilization is the fraction of busy time to total
 - Dimensionless [s/s]
- λ = X = a / T = d / T
 - Arrival rate=throughput is the number of arriving=departing jobs per time [1/s]
- s = b / d

Service time is busy time per job [s]

- $U = \lambda s = Xs$
- also s = 1 / μ -> U = λ / μ

– If $\lambda > \mu$ – utilization/intensity > 1, system unstable

U – utilization X – throughput	Utilization Law: $U_i = X_i \times S_i = \lambda_i \times S_i$	(3.2.12)
S – service time λ – arrival rate	Forced Flow Law:	
V – visit rate	$X_i = V_i \times X_0$	(3.2.13)
D – service	Service Demand Law:	
demand /min time	$D_i = V_i \times S_i = U_i / X_0$	(3.2.14)
system	$D_i = V_i \wedge D_i = O_i / A_0$	(0.2.14)
R – response	Little's Law:	
time	$N = X \times R$	(3.2.15)
M – thinking	Interactive Response Time Law	
	14	
Z – think time	$R = \frac{M}{X_0} - Z$	(3.2.16)

Little's Law

Little's Law

- Works with averages -> any steady-state
- On server only -> utilization law
- On server+queue -> computes queue length

average number of customers in a box from the box

average time spent in the box.

Interactive Response Time Law

$$R = \frac{M}{X_0} - Z.$$

Latency vs. throughput

Metric

(Z=0)

Asymptotics

- In previous graph, vertical line optimum
- To the left light load underutilized
 - Throughput scales linearly by number of users, limited by sum of demands \$N\$
 - Latency constant
- To the right heavy load overutilized
 - Throughput constant, limited by bottleneck resource
 - Latency scales linearly

$$X_0 \le \frac{1}{\max\{D_i\}}.$$

$$R = \frac{N}{X_0} \ge \frac{N}{\min\left[\frac{1}{\max\left\{D_i\right\}}, \frac{N}{\sum_{i=1}^K D_i}\right]} = \max\left[N \times \max\left\{D_i\right\}, \sum_{i=1}^K D_i\right].$$

$$X_0 \le \frac{N}{\sum_{i=1}^K D_i}.$$

Open system latency/throughput

M/M/1

- No longer operational analysis (G/G/*)
 - We need the memoryless property of exp.dist.
 - PASTA: Poisson Arrivals See Time Averages
 - Distribution of the residual time until the next arrival is also exponentially distributed with the same parameter I as the time between consecutive arrivals.
 - Distribution of the residual service time is the same as that of the service time.
- R = QS + S avg. response time is avg. service time of jobs in the queue + the job being served
 - Arriving job sees Q jobs ahead, no matter how much of the service time remains for the job(s) being served

M/M/1

- Using Little's law on Q
 - $-R = (\lambda R)S + S$
 - $> R = S / (1 \lambda S)$
 - Using Little's law on λS

- > R = S / (1 - U)

- Residence time depends on utilization.
- Stretch factor: (on basic service demand)

$$-F = R / S = 1 / (1 - S) = Q / mU$$

 Where Q is Unix load average, m number of CPUs, U percent CPU busy

Open system latency/utilization

Multiserver latency/utilization

Markov chains

- Why does the queue behave like this?
 - Birth-death Markov process
 - States 0..J+1 (J queue capacity)
 - Last state blocking
 - Arrival changes state to n+1, departure to n-1
 - Probability of n jobs in the system $p_n = (1-U)U^n$
 - Utilization $U = 1 p_0$
 - Mean queue length E[n] = $\Sigma_n^J np_n = U / (1-U)$

PASTA and splitting

- The memoryless property allows splitting and joining of request flows
 - Each flow is a series of totally random events
 - Splits defined by probabilities
 - Jackson's theorem translates to visit rates
 - Allows construction of product-form queueing networks

Mean Value Analysis

- Basis of QN solving tools
- $R_i(N) = S_i[1 + Q_i(N 1)]$
- Qi(n) average number in queue I with N total jobs
- Nth job upon arrival sees the system with N-1 jobs
 - > Iterative algorithm
 - Starts with Qi(0)=0, n=1 until n=N

Practical possibilities

- Profiling from server logs
 - Also called Performance Monitoring
 - Shows server load in the past (CPU, RAM, network, number of processes, ..)
 - Shows its periodicity, can do trend predictions
 - Useful for existing applications to be migrated to the cloud
 - or as an estimate when done on a similar application

A CPU utilization graph

Web server statistics

- Apache has mod_status
 - Reports concurrency and throughput
 - Combined with CPU utilization
 - Allows to compute service demand, i.e. LATENCY
 - And to estimate maximum throughput
 - (service demand should be constant unless overloaded)

Tools

- Estimation of load profile from search engine statistics
 - Useful when marketing estimates the number of users and you need to know when they'll be accessing the site
 - It will give you the time profile, but not the actual amount of load
 - Available from search engine term statistics or some click counter providers

A graph from Google Insights

Load testing

- Good if you already have the application
 - Or a prototype, or something similar to test
- Will give you the answer to:
 - How much CPU/RAM does an app this complex written in this language need?
 - How many requests per second does it give on this particular server?
- Will give you the possibility to optimize the server
- You'll need to know the app's usage scenarios
 - To construct a good testing script/walk through the site
 - To be able to translate numbers of users to requests/s

Load testing tools

- httperf made by HP, quite old
 - Simulates an open system
 - You give number of requests/s and a script
 - Returns number of failures and timeouts
 - When low enough, the system can sustain the offered load
 - Timeout needs to be set reasonably
 - » max 8s for whole page load is recommended
 - Used by ramping up load until failure
- siege
 - Simulates a closed system
 - You give number of users and think time (+ script)
 - Returns measured response times
 - If below threshold (see above), system can sustain the load

Load testing tools

- JMeter
 - closed system (I think)
 - Strong side: pròxy to capture scenarios
 - Weak side: written in Java :-E
 - better than using scenarios is to test indiv. request types and construct a multiflow QN
- Tsung
 - my favorite
 - closed system, but can be convinced to do open
 - written in Erlang very accurate
 - also has a proxy
 - automatic ramp-up scripts possible
 - integrated graphical reporting with GnuPlot

Queueing network tools

- JMT (Java Modelling Tools)
 - Can do several models, graphical, parametric or script input
 Logfile extraction, Markov Chain simulation, and Asymptotics

 - Best for quick analyses, manual usage
- PDQ (Pretty Damn Quick)
 - Core is in C
 - Is a library with binding for several languages
 - Only script input
 - Best for integration in your programs

Conclusion – What to use

- Small company Webhosting or VM rent
- Medium Colocation + virtualization
- Medium with good conditions Own servers + virtualization
- Large private or hybrid laaS
- Web App. Startup PaaS and have an escape plan, or public laaS
- Batch processing public laaS

Literature

- http://www.elektrorevue.cz/clanky/02019/index.html
- Daniel A. Menascé, Virgilio A.F. Almeida, Lawrence W. Dowdy: Performance by Design: Computer Capacity Planning by Example.
- Neil J. Gunther: Analyzing Computer System Performance with Perl::PDQ Second Edition.
- Tomáš Kalibera, Vlastimil Babka: Modeling in Performance Evaluation, lecture for Performance Evaluation, D3S MFF CUNI, 2013.
- František Křížovský: Materiály k předmětu Teorie provozního zatížení, kat. telekomunikací FEL ČVUT, 2012.