
Disassembling with radare2
Tomáš Antecký (tomas@antecky.cz)

8. 10. 2017

antecky.cz/r2

https://antecky.cz/r2

radare2

● An open source reverse engineering framework
○ http://rada.re
○ https://github.com/radare/radare2

● Started at 2006 (today over 15 000+ commits, just for radare2 repository)
● Used for static/dynamic analysis, binary patching, forensic analysis,...
● Set of libraries/binaries primarily written in C
● Runs on: Linux, *BSD, Windows, OSX, iOS, Android.…
● Supports many:

○ Architectures: x86, mips, arm, sparc, powerpc, avr,…
○ Binary formats: ELF, mach0, PE, DEX, ART, Wasm, Swf, COFF,...

● Can handle tampered binaries
● Mainly used through CLI, but there are graphical frontends
● Scriptable (bindings to Python, Ruby, JavaScript, Perl, Java, C#,...)

antecky.cz/r2

http://rada.re
https://github.com/radare/radare2
https://antecky.cz/r2

Installation

● radare2 packages provided by distributions are obsolete
● Recommend way of installation is by using Git:

● Language bindings (r2pipe) are installed separately:

antecky.cz/r2

$ git clone https://github.com/radare/radare2.git
$ cd radare2
System-wide installation (requires root)
$ sys/install.sh
User based installation (into $HOME)
$ sys/user.sh

$ pip install r2pipe
$ npm install r2pipe
$ gem install r2pipe

https://antecky.cz/r2
https://github.com/radare/radare2.git

Major binaries in radare2 suite

● rabin2
○ Binary identification

● rasm2
○ Inline assembler/disassembler

● radiff2
○ Binary diffing

● r2pm
○ Package/plugin manager

● r2
○ The “main” binary
○ Console interface
○ Many shell like features

(file/command redirection, history, shortcuts,
command substitution, tab completion...)

● and many more... antecky.cz/r2

$ rabin2 -I /bin/ls
arch x86
binsz 124726
bintype elf
...

$ rasm2 -a arm -b 64 'movk x0, 0x1337'
e06682f2
$ rasm2 -a arm -b 64 -d e06682f2
movk x0, 0x1337

$ radiff2 genuine cracked
0x000081e0 85c00f94c0 => 9090909090 0x000081e0
0x0007c805 85c00f84c0 => 9090909090 0x0007c805

$ r2 /bin/ls # open binary (read-only)
$ r2 -w /bin/ls # enable writing
$ r2 -d /bin/ls # run with a debugger
$ r2 -n /bin/ls # open as a flat file
$ r2 - # open without a file

https://antecky.cz/r2

Demo

● Quick demonstration of radare2 capabilities
● Static and dynamic analysis
● A simple crackme/CTF challenge
● Goal is to obtain a password/flag stored inside a binary
● Source code at antecky.cz/r2 (spoiler alert)
● Build with help of radare2 (see prepare.py)
● Each step is in this presentation as well
● So no worries, if don't catch anything

antecky.cz/r2

https://antecky.cz/r2
https://antecky.cz/r2

Demo

● A binary called runme
● ELF64 for Linux, statically linked
● Requires password

● Let’s try objdump and gdb first

antecky.cz/r2

https://antecky.cz/r2

Demo

● Next run $ r2 runme
● ? is the most important command
● It works with subcommands as well (e.g. i?)
● i shows the same info as rabin2
● j suffix shows JSON for many commands
● It can be prettified by adding ~{} (see ?@? for more)
● A binary entry points are displayed by ie
● S= shows program’s segments in a fancy way

● The text/code section is writable
● Self modifying code?

antecky.cz/r2

https://antecky.cz/r2

Demo

● It’s always a good idea to search for interesting strings
● izz searches for string in the whole binary
● ASCII and Unicode strings are found at once
● We can combine the command with an internal less as well (i.e. izz~..)
● Only strings inside data segment (LOAD0) seems to be interesting
● The results can be filtered by using an internal grep (izz~LOAD0)

● In this case there is nothing useful

antecky.cz/r2

https://antecky.cz/r2

Demo

● Visual mode can be entered by running V
command

● p/P rotates between views
● The second view/panel is the Disassembly

view
● Once again ? displays help
● hjkl keys are used for move around
● q is used to go back to the command line
● In order to run a command inside Visual

mode press :
● c activates cursor for easier movement
● Command s entry0 seeks back to the

entry point antecky.cz/r2

https://antecky.cz/r2

Demo

● Next pressing V brings Function graph,
however a function has to be analyzed first

● Analysis can be done by running af command
○ aa can analyze the whole file (not recommend

for large binaries)
● p/P rotates between views
● hjkl keys are used for move around
● +/- changes zoom level
● tab/TAB cycles between nodes
● y/Y folds current node
● t/f follows conditional jump
● g? jumps to particular node (e.g. gc)
● . centers current node antecky.cz/r2

https://antecky.cz/r2

Demo

● Let’s focus on the three syscalls at the beginning
● Linux x86-64 kernel syscall calling convention:

○ syscall number and return value is inside rax
○ rdi/rsi/rdx/r10/r8/r9 for syscall arguments

● asl command can be used to translate a syscall number
to its name

● The first syscall writes “password:” string into stdout
(mov edi, 1)
○ Use x @ 0x4000e8 to examine memory at given address

○ Zero terminated strings can be printed by running psz

antecky.cz/r2

https://antecky.cz/r2

Demo

● The second syscall reads from stdin (mov edi, 0) to
stack (mov rsi, rsp)

● The third syscall is nanosleep and due to it the binary
sleeps for given amount of time

● Length of sleep is specified by a struct at 0x400106
○ In this case it is hardcoded to 3 seconds

● We can insert comments by pressing ;

antecky.cz/r2

https://antecky.cz/r2

Demo

● This brute force “protection” can be disabled by patching the binary:
○ Creating a backup of the binary (!cp runme runme.bak)
○ Enabling writing (oo+)
○ Display bytes/opcodes for each instruction (e asm.bytes=1)
○ Placing cursor at 0x0060015f where is the instruction syscall (2 bytes long)

○ Pressing A for interactive assembler and writing 2 nop instruction
○ Confirming changes by running radiff2

antecky.cz/r2

https://antecky.cz/r2

Demo

● Next the first character on the stack is compared with character “L”

● If it is not equal the provided character a string “Wrong!” is printed (psz @
0x4000f3)

● Finally the program exits (asl 0x3c) with a status code 1 (mov edi, 1)

antecky.cz/r2

https://antecky.cz/r2

Demo

● In the second branch the character (“L”) is used in a loop to decrypt/xor an
instruction starting at 0x006001af and further down

antecky.cz/r2

“encrypted”
instructions

https://antecky.cz/r2

Demo

● Now it is time to switch to dynamic analysis:
○ Reopen the binary (oo)
○ Start the binary with an attached debugger (ood)
○ Place a breakpoint at 0x0060016a (db 0x0060016a)
○ Continue (dc/F9) until the breakpoint is hit
○ Provide some garbage input as a password
○ After that the breakpoint is hit
○ Write “L” character (0x4c byte) to the stack

(wx 0x4c @ rcx)
○ Confirm it by running px 1 @ rcx

○ Perform several single step (ds/F7) to see valid instructions emerging
○ A command can be repeated several times by providing number prefix (e.g. 300ds)

antecky.cz/r2

https://antecky.cz/r2

Demo

● It can be seen that a new decrypted
block is the same as the previous one

● Except a compared character is
different (now it is “1”)

● Manual password extraction can be
tedious

● There are several ways how to
automate this process

antecky.cz/r2“encrypted” instructions

https://antecky.cz/r2

Demo

● To automate the process of password
extraction Python 3 was chosen

● Requires installed r2pipe package
○ $ pip3 install r2pipe

● See a script solve.py
● Works the same way as the manual

method described earlier
● All used commands should be clear by

now

antecky.cz/r2

https://antecky.cz/r2

Useful links

● radare2 book
○ https://radare.gitbooks.io/radare2book/content

● radare2 exploration
○ https://monosource.gitbooks.io/radare2-explorations/content

● radare2 cheat sheet
○ https://github.com/radare/radare2/blob/master/doc/intro.md

● Reverse Engineering for Beginners
○ https://beginners.re
○ An open source book about reverse engineering (x86, ARM, MIPS)

● Compiler Explorer
○ https://godbolt.org
○ Shows an assembly output of a compiled source code
○ Supports: gcc, clang, icc, MSVC,...

antecky.cz/r2

https://radare.gitbooks.io/radare2book/content
https://monosource.gitbooks.io/radare2-explorations/content
https://github.com/radare/radare2/blob/master/doc/intro.md
https://beginners.re/
https://godbolt.org/
https://antecky.cz/r2

Questions

antecky.cz/r2

https://antecky.cz/r2

