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Before we begin

SUSE is hiring!

http://www.suse.com/jobs

http://www.suse.com/jobs
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Agenda

> Power management overview

> Governors, drivers

> Governors close-up

   > intel_pstate powersave

   > generic ondemand

   > generic schedutil
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Questions, anytime
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What am I running?

$ cpupower --cpu all frequency-info --driver
$ cpupower --cpu all frequency-info --policy
$ cpupower --cpu all frequency-info --governors
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Active Power Management

Scaling voltage and frequency of the CPUs to consume as little 
power as needed while guaranteeing acceptable performance

Power Management Overview
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Active Power Management

instantaneous power consumption of a CPU:

P  C V∝ 2 f + P
s

Power Management Overview

_ C  – capacitance
_ V  – voltage
_ f   – clock frequency
_ P

s
 – power when halted

- V, f move together
- P is quadratic in V
- P

s
 is low (since Nehalem)

see https://physics.stackexchange.com/a/34778 for a discussion

https://physics.stackexchange.com/a/34778
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Active Power Management

Power Management Overview

https://plus.google.com/+TheodoreTso/posts/2vEekAsG2QT

https://plus.google.com/+TheodoreTso/posts/2vEekAsG2QT
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Active Power Management

Race to halt – is it enough?

> as long as your idle power is low enough (Nehalem+) ☺
> ADD-type VS LOAD-type instructions ☹

> race-to-halt has a linear effect (P  P∝
s
) but P is quadratic in voltage ☹

> ACPI specs VS μarch-specific controls ☹

 ⟹ intel_pstate driver/governor

Power Management Overview
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P-states a.k.a. Operating Performance Points

Defined by the ACPI spec (Advanced Configuration and Power Interface)

http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf

> G-states: global system states (G0...G3)

> D-states: device power states (D0...D3)

> C-states: CPU power states (C0...C3)

> P-states: [device|processor] performance states (P0...Pn)

> S-states: sleeping states (S1...S5)

Power Management Overview

The lower the state number, the “more active” a component is.

http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
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P-states a.k.a. Operating Performance Points

> a pair (V, f) determining the CPU operating state

> each (logical!) core can be at a different P-state

> V, f grow together

   > the higher the values, the higher the performance...

   > ...but also the power consumption

Power Management Overview
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Governors and Drivers

> governor: decides if change is necessary / which frequency to go next

> driver: applies the change to CPUs

CPUFreq was designed to make governors and drivers separate from 
each other
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Choose your driver, choose your governor

powersave

performance

userspace

conservative

ondemand

schedutil

Governors and Drivers
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not intel_pstate!

It embeds its own 

governors
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Confusing Names

Governors and Drivers

GENERIC GOVS
Performance
Powersave
Userspace
Ondemand
Conservative
Schedutil

INTEL_PSTATE GOVS
Performance
Powersave

HWP
Hardware-managed 
P-states
(Skylake+)

PASSIVE MODE
intel_pstate can be turned into a 
generic driver, booting with
intel_pstate=passive
Its name becomes intel-cpufreq

similar

very different!!
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Governors close-up
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intel_pstate powersave governor (since Linux v3.9)

> input:

   > registers APERF, MPERF (model-specific)

Governors close-up
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intel_pstate powersave governor

> idea

   > Proportional Integral Derivative (PID) controller

e(t) error at time t

correction(t) = A e(t) + B ∫
0

t e(s)ds + C d/dt e(t)

Governors close-up
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https://en.wikipedia.org/wiki/PID_controllerBy default, B = C = 0

https://en.wikipedia.org/wiki/PID_controller
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Intermezzo: Load VS Utilization

Governors close-up

cpu0

cpu1

cpu2

cpu3
tasks

cpu runqueues

> cpus see utilization
> scheduler knows load (runqueues, iowait)
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schedutil (generic) governor (since Linux v4.7)

> input: load computed by the scheduler*

Governors close-up

util_freq_invariant = util_raw * curr_freq / max_freq;

next_freq ∝ max_freq * util_freq_invariant / cpu_capacity;

* using the PELT algorithm https://lwn.net/Articles/531853/ 

kernel/sched/cpufreq_schedutil.c

https://lwn.net/Articles/531853/
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Questions!

> active power management, p-states, pairs (V, f)

> P  C V∝ 2 f + P
s

> governors and drivers

> freq scaling w/ data from CPU VS data from scheduler

docs: https://www.kernel.org/doc/html/v4.12/admin-guide/pm/cpufreq.html 

https://www.kernel.org/doc/html/v4.12/admin-guide/pm/cpufreq.html
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Extras
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intel_pstate powersave governor

> implementation

Governors close-up

busy  APERF / MPERF;∝
error = setpoint – busy;

p_term = d_gain * error;
integral += error;
i_term = i_gain * integral;
d_term = d_gain * (error – last_error);

correction = p_term + i_term + d_term;
next_pstate = current_pstate – correction;

drivers/cpufreq/intel_pstate.c
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intel_pstate powersave governor

> default parameters

Governors close-up

static struct pstate_adjust_policy pid_params = {
.sample_rate_ms = 10,
.sample_rate_ns = 10 * NSEC_PER_MSEC,
.deadband = 0,
.setpoint = 97,
.p_gain_pct = 20,
.d_gain_pct = 0,
.i_gain_pct = 0,

};

all zero except the proportional term...
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ondemand (generic) governor (since long ago)

> input: idle time

Governors close-up

idle_time = cur_idle_time - prev_cpu_idle;
time_elapsed = update_time - prev_update_time;

load = 100 * (time_elapsed - idle_time) / time_elapsed;

freq_next = min_f + load * (max_f - min_f) / 100;

drivers/cpufreq/cpufreq_ondemand.c
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