
CPU Frequency Scaling in Linux

Giovanni Gherdovich

ggherdovich@suse.cz



2

Before we begin

SUSE is hiring!

http://www.suse.com/jobs

http://www.suse.com/jobs


3

Agenda

> Power management overview

> Governors, drivers

> Governors close-up

   > intel_pstate powersave

   > generic ondemand

   > generic schedutil



4

Questions, anytime



5

What am I running?

$ cpupower --cpu all frequency-info --driver
$ cpupower --cpu all frequency-info --policy
$ cpupower --cpu all frequency-info --governors



6

Active Power Management

Scaling voltage and frequency of the CPUs to consume as little 
power as needed while guaranteeing acceptable performance

Power Management Overview



7

Active Power Management

instantaneous power consumption of a CPU:

P  C V∝ 2 f + P
s

Power Management Overview

_ C  – capacitance
_ V  – voltage
_ f   – clock frequency
_ P

s
 – power when halted

- V, f move together
- P is quadratic in V
- P

s
 is low (since Nehalem)

see https://physics.stackexchange.com/a/34778 for a discussion

https://physics.stackexchange.com/a/34778


8

Active Power Management

Power Management Overview

https://plus.google.com/+TheodoreTso/posts/2vEekAsG2QT

https://plus.google.com/+TheodoreTso/posts/2vEekAsG2QT


9

Active Power Management

Race to halt – is it enough?

> as long as your idle power is low enough (Nehalem+) ☺
> ADD-type VS LOAD-type instructions ☹

> race-to-halt has a linear effect (P  P∝
s
) but P is quadratic in voltage ☹

> ACPI specs VS μarch-specific controls ☹

 ⟹ intel_pstate driver/governor

Power Management Overview



10

P-states a.k.a. Operating Performance Points

Defined by the ACPI spec (Advanced Configuration and Power Interface)

http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf

> G-states: global system states (G0...G3)

> D-states: device power states (D0...D3)

> C-states: CPU power states (C0...C3)

> P-states: [device|processor] performance states (P0...Pn)

> S-states: sleeping states (S1...S5)

Power Management Overview

The lower the state number, the “more active” a component is.

http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf


11

P-states a.k.a. Operating Performance Points

> a pair (V, f) determining the CPU operating state

> each (logical!) core can be at a different P-state

> V, f grow together

   > the higher the values, the higher the performance...

   > ...but also the power consumption

Power Management Overview



12

Governors and Drivers

> governor: decides if change is necessary / which frequency to go next

> driver: applies the change to CPUs

CPUFreq was designed to make governors and drivers separate from 
each other



13

Choose your driver, choose your governor

powersave

performance

userspace

conservative

ondemand

schedutil

Governors and Drivers

ac
pi-c

pufre
q

in
te

l-c
pufre

q

pcc
-c

pufre
q

oth
er

s…
 

pcc
-c

pufre
q

DRIVERS

GO
VE
RN
OR
S

not intel_pstate!

It embeds its own 

governors



14

Confusing Names

Governors and Drivers

GENERIC GOVS
Performance
Powersave
Userspace
Ondemand
Conservative
Schedutil

INTEL_PSTATE GOVS
Performance
Powersave

HWP
Hardware-managed 
P-states
(Skylake+)

PASSIVE MODE
intel_pstate can be turned into a 
generic driver, booting with
intel_pstate=passive
Its name becomes intel-cpufreq

similar

very different!!



15

Governors close-up



16

intel_pstate powersave governor (since Linux v3.9)

> input:

   > registers APERF, MPERF (model-specific)

Governors close-up



17

intel_pstate powersave governor

> idea

   > Proportional Integral Derivative (PID) controller

e(t) error at time t

correction(t) = A e(t) + B ∫
0

t e(s)ds + C d/dt e(t)

Governors close-up

pr
op

or
tio

na
l

in
te

gr
al

co
ns

id
er

s 
ho

w lo
ng

 

er
ro

r p
er

sis
te

d

de
riv

at
ive

Pre
ve

nt
s 

ov
er

sh
oo

t

https://en.wikipedia.org/wiki/PID_controllerBy default, B = C = 0

https://en.wikipedia.org/wiki/PID_controller


18

Intermezzo: Load VS Utilization

Governors close-up

cpu0

cpu1

cpu2

cpu3
tasks

cpu runqueues

> cpus see utilization
> scheduler knows load (runqueues, iowait)



19

schedutil (generic) governor (since Linux v4.7)

> input: load computed by the scheduler*

Governors close-up

util_freq_invariant = util_raw * curr_freq / max_freq;

next_freq ∝ max_freq * util_freq_invariant / cpu_capacity;

* using the PELT algorithm https://lwn.net/Articles/531853/ 

kernel/sched/cpufreq_schedutil.c

https://lwn.net/Articles/531853/


20

Questions!

> active power management, p-states, pairs (V, f)

> P  C V∝ 2 f + P
s

> governors and drivers

> freq scaling w/ data from CPU VS data from scheduler

docs: https://www.kernel.org/doc/html/v4.12/admin-guide/pm/cpufreq.html 

https://www.kernel.org/doc/html/v4.12/admin-guide/pm/cpufreq.html


21

Extras



22

intel_pstate powersave governor

> implementation

Governors close-up

busy  APERF / MPERF;∝
error = setpoint – busy;

p_term = d_gain * error;
integral += error;
i_term = i_gain * integral;
d_term = d_gain * (error – last_error);

correction = p_term + i_term + d_term;
next_pstate = current_pstate – correction;

drivers/cpufreq/intel_pstate.c



23

intel_pstate powersave governor

> default parameters

Governors close-up

static struct pstate_adjust_policy pid_params = {
.sample_rate_ms = 10,
.sample_rate_ns = 10 * NSEC_PER_MSEC,
.deadband = 0,
.setpoint = 97,
.p_gain_pct = 20,
.d_gain_pct = 0,
.i_gain_pct = 0,

};

all zero except the proportional term...



24

ondemand (generic) governor (since long ago)

> input: idle time

Governors close-up

idle_time = cur_idle_time - prev_cpu_idle;
time_elapsed = update_time - prev_update_time;

load = 100 * (time_elapsed - idle_time) / time_elapsed;

freq_next = min_f + load * (max_f - min_f) / 100;

drivers/cpufreq/cpufreq_ondemand.c


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

