| I 8.10.2016

Hewlett Packard
Enterprise

An Introduction to
Kubernetes

Premys Kafka

premysl.kafka@hpe.com kafkapre @https://github.com/kafkapre

mailto:premysl.kafka@hpe.com

{ History }

e ??77? - Virtual Machines

e 2008 - Linux containers (LXC)
e 2013 - Docker

* 2013 - CoreOS stack

e 2014 - Kubernetes

{ Distributed systems }

*Collection of computers that act, work, and appear
as one large computer

* Advantages:

* scalable horizontally, reliable, extensible, cheaper computers, geographic distribution, ...

* Problems:

* network can fail, bandwidth, consistency, workload allocation, security issues, ...

{ Overview }

* Kubernetes is an open-source system for automating
deployment, scaling, and management of containerized
applications.

*Name Kubernetes is from Greek word kybernétés which
means "helmsman" or "governor”

*Firstly announced by Google in 2014
*Influenced by Google's Borg
* Many contributors (Google, RedHat, IBM, Cisco, VMware)

{ Overview }

*Commonly referred to as "k8s"

*Apache License 2.0

*Written in Go

*Cross-platform (POC for Windows)
*Kubernetes v1.0 was released on July 21, 2015
*Google Container Engine runs k8s

{ Features }

* Automatic binpacking

*Horizontal scaling

*Self-healing

*Storage orchestration

*Service discovery and load balancing
*Secret and configuration management

{ Pod }

*A group of one or more containers with shared storage

*Containers also share an IP address and port space, and
can find each other via localhost

*Treated as one logical object
*Deployed on one machine together

Life cycle
* Bound to a node, restart in place
e Can die, cannot be reborn with same ID

{ Replication Controller }

*Creates and destroys Pods dynamically

*Ensures that a pod or particular set of pods are always
up and available

* pods are automatically replaced if they fail

*Scaling Pods

*Recommend to use Replication Controller even when
you want to create one Pod

{ Service }

*An abstraction which defines a logical set of Pods and a
policy by which to access them

*Pods are targeted and determined by a Label Selector

{ Service Types }

ExternalName: map the service to the contents of the externalName field e.g.
example.com

* ClusterlIP: use a cluster-internal IP only

*NodePort: on top of having a cluster-internal IP, expose the service on a port on each
node of the cluster

e LoadBalancer: on top of having a cluster-internal IP and exposing service on a
NodePort also, ask the cloud provider for a load balancer which forwards to the Service

10

{ Labels }

*Key/value pairs that are attached to objects, such as
pods

*Can be used to organize and to select subsets of objects
*Each Key must be unique for a given object

*Loose coupling

*Can be added dynamically

11

{ Architecture }

*Two types of nodes

* Master node: Master components (APls, scheduler, etc) are there
* Worker node: Kubelet and containers are there

*Kubelet: takes a set of PodSpecs and ensures that the containers described are
running and healthy

*Ku be-proxy: reflects services on each node and can do simple TCP,UDP stream
or round robin TCP,UDP forwarding across a set of backends

* APl Server: po business logic implemented in separate components or in plug-

ins. Also processes REST operations, validates them, and updates the corresponding
objects in persistence (Etcd)

12

{ Architecture }

*Scheduler: binds unscheduled pods to node

*Control Manager: processes controllers like DaemonSet Controller, Replication
Controller

*Etcd: distributed storage

e Kubectl: command line client

13

{ Architecture }

kubectl (user commands)

Firewall

&

Node

/)l kubelet Proxy

/

\
\ \ docker

Pod

A Pod
authentication

Pod
authorization
- oy | | (p || =y
schedulin REST
actuatorg > (pods, services, 4
rep. controllers) e
4 T4

controller manager
(replication controller etc.)

Scheduler

Master components) Distributed Node
ColuFated, or spread ac'ross machines, Watchable kubetet Proxy
as dictated by cluster size. Storage
(implemented via etcd)
\ docker
Y
Pod Pod Pod

I II T II

{ Service Schema }

apiserver

N

Y

kube-proxy

ServicelP
(iptables)

{ Other Features }

*Volumes (Git, NFS, Flocker, some cloud provider storage)
*DNS

*Namespaces

*DaemonSet

*Jobs

*Secrets

* ConfigMaps

* Autoscaling

*Resource limitation

16

{ Try Kubernetes }

e|nstall it
* Minikube — runs virtual machine with k8s
* Kubeadm — installs k8s on your machine

*Model your application in k8s yamls

*Dep

oy and manage your application

17

{ Alternatives }

*Mesos
Docker Swarm

{ Demo }

KSS DEMO

see: https://github.com/kafkapre/linuxdays2016-kubernetes-example

19

https://github.com/kafkapre/linuxdays2016-kubernetes-example

—

Hewlett Packard
Enterprise

Thank you!
Q&A

premysl.kafka@hpe.com Okafkapre ,@https://github.com/kafkapre

mailto:premysl.kafka@hpe.com

