

Linux Days Prague 2014

Towards “emerge
gentoo-kernel”

Vlastimil Babka
caster@gentoo.org

Automatic kernel configurationAutomatic kernel configuration
and building in Gentooand building in Gentoo

Linux Days Prague 2014

Current state
● sys-kernel/*-sources packages

● gentoo-sources, vanilla-, git-, hardened- …

● Ebuilds just unpack sources to /usr/src/
● User configures, builds, installs manually
● Or uses genkernel, invoked also manually

Linux Days Prague 2014

Current state
● sys-kernel/*-sources packages

● gentoo-sources, vanilla-, git-, hardened- …

● Ebuilds just unpack sources to /usr/src/
● User configures, builds, installs manually
● Or uses genkernel, invoked also manually

● THIS IS (NOT) GENTOO!!!
● Looks like Gentoo installation process
● Does not look like normal Gentoo usage
● Why should the kernel be different?

Linux Days Prague 2014

Why is it bad?
● Manual work – boring, error prone, …

● No binpkg support

● Space occupied uselessly in /usr/src/
● Most sources not needed for module building
● Object files if user doesn't delete them

– emerge -C won't clear them away for you
● 3.16.3: 635MB sources, 365MB objects

● Packages depending on kernel config
● emerge warns (or dies) when something not

enabled, user has to adjust+rebuild

Linux Days Prague 2014

Why is it like that?
● Building itself is simple

● Make -jX

● Installing could be more tricky than your
average ebuild's make install
● initrd creation, grub config, …
● But let's assume genkernel works

● The obvious caveat is configuration
● Thus the focus of this talk

Linux Days Prague 2014

Kernel configuration
● The proper Gentoo way: USE flags!

● openSUSE 3.16.3 .config has 6593 lines...

● Very system- and user-specific
● Drivers, features, tuning, debugging, …
● Wrong .config → unbootable system

● But binary distros manage this somehow?
● One (or few) configs enough for everyone
● We could just package such distro kernel?
● That would be lame, so just steal the .config!

Linux Days Prague 2014

Step 1: Gentoo .config
● Let's create a generic configuration!

● Maintained by the Gentoo kernel team
● Possibly starting with e.g. openSUSE .config
● Hopefully compatible with all ebuilds

● Ebuild will compile with it and install
● Providing binaries would be non-Gentooish :)
● You can choose gcc version as usual
● Some customization could be possible

– USE flags for desktop/server etc...
– Maybe infer processor type from CFLAGS?

Linux Days Prague 2014

This has been done before!

● Funtoo has USE=binary for some kernels
● debian-sources and openvz-rhel6-stable
● Own enhanced fork of genkernel

● Calculate linux has USE=vmlinuz
● calculate-sources
● cl-kernel instead of genkernel for own build

● Various forums posts asking about this
● Bug 491864 – use genkernel in ebuild
● GLEP 26 (2004?) - just about the building

Linux Days Prague 2014

How to do it?
● USE=”binary” emerge gentoo-sources?

● Funtoo and Calculate Linux do that, but...
● Why leave the sources around?

– Most not necessary to build e.g. kernel modules
– openSUSE kernel-devel: 85MB (vs 635MB full)
– Not installing sources by “*-sources” is weird

● Complicated maintenance
– Need to bump genpatches and config at the same

time
– Stabilization also at the same time

Linux Days Prague 2014

How to do it?
● A new package such as “gentoo-kernel”

● Build in /var/tmp/portage, install vmlinuz etc.
● Same distfiles as *-sources, plus config

– Config maintained by Gentoo Kernel team
● Needs updates for version bumps (esp. major)
● Possible to do more variants per USE flags

● /usr/src/linux-*: just files for module building
– Similar to kernel-devel packages on binary distros

● binpkg support should be possible
– grub, initrd creation in pkg_postinst (genkernel?)
– removal in pkg_postrm

Linux Days Prague 2014

Step 1: Pros and Cons
● Pro: Very simple for the user

● Much simpler than now!
● Better confidence in bug reports
● But, more work for the kernel team :)

● Con: not custom enough for many users
● Con: large .config → long build times

● openSUSE config: 40 min on i5 (ssd/tmpfs)
– 6.5 min with trimmed down custom config

● Funtoo page says 1 hour on i7 for debian-src

Linux Days Prague 2014

Step 1: Pros and Cons
● Con: large .config → modules eat disk

● oS config: 5.2MB vmlinuz + 172MB modules
– 5.5MB vmlinuz + 7.7MB mods with custom config
– 2.4GB modules with DEBUG_INFO enabled!

● Probably need to introduce debug USE flag...

● Con: large .config → temp build space
● oS config: 1.4 GB (8.9GB with DEBUG_INFO)

– Custom config: 365MB (w/o DEBUG_INFO)
● Funtoo says 14GB tmpdir for debian-sources
● Problem for tmpfs builds with <16GB RAM

Linux Days Prague 2014

Step 1: Pros and Cons
● Con (?): everything needs to be modules

● Otherwise generic kernel image too large
● Therefore, initrd is always needed

– Some opportunity for trouble

● Con (?): what if the generic .config does
not satisfy all portage ebuilds?
● Ebuilds might request conflicting features?

● Can we deal with these disadvantages?
● And still keep it relatively simple for user?

Linux Days Prague 2014

Step 2: User Config
● To deal with the cons mentioned, but stay

simple, we need a way so that:
● Users can state their .config requirements
● Ebuilds can state their .config requirements
● Things keep working on version bumps

● First idea: let user provide own .config
● Possibly start with Gentoo generic .config
● Remove unwanted drivers, set CPU type etc.
● What about version bumps?

Linux Days Prague 2014

So What Can Go Bump?
● New .config options appear (all the time)

● We don't want to go interactive in emerge

● Obsolete (deprecated) options disappear
● Special case: options can be renamed?

● Or drivers replaced, such as cciss → hpsa

● Opts hidden behind new umbrella option
● Default value changes (SLAB → SLUB)
● Dependencies between options change

Linux Days Prague 2014

The Proposed Solution
● User says which config options she cares

about having enabled/disabled/module...
● E.g. start with generic gentoo config, specify

CPU type, disable unwanted drivers...
● Make some drivers built-in (thus no initrd)
● Store result in /etc, kernel ebuild reads it

● Options not specified by user are taken
from the generic Gentoo .config (default)
● Remember, the Gentoo .config is always

updated by us for the given kernel version

Linux Days Prague 2014

Practical Issues
● How to distinguish “options not specified

by user” that should get default value?
● For options where default matches user

config, did user want that or just didn't care?
● The default value might change in a new

version, but the old value in user config wins?

● Before discussing solution, let's look at
how .config files work internally
● And how build .config will be created

Linux Days Prague 2014

How does .config work?
drivers/usb/Kconfig:

config USB_STORAGE
 tristate "USB Mass Storage support"
 depends on SCSI

config USB_STORAGE_DEBUG
 bool "USB Mass Storage verbose debug"
 depends on USB_STORAGE

config USB_STORAGE_REALTEK
 tristate "Realtek Card Reader support"
 depends on USB_STORAGE

.config example (module, enabled, disabled):

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set

Linux Days Prague 2014

Build with user config
User .config (based on e.g. 3.12):

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set

Gentoo .config (based on 3.13):

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK=m
CONFIG_USB_STORAGE_DATAFAB=m (new option)

Build .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set
CONFIG_USB_STORAGE_DATAFAB=m

Linux Days Prague 2014

Build with user config
User .config (based on e.g. 3.12):

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set

Gentoo .config (based on 3.14):

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG is not set (changed)
CONFIG_USB_STORAGE_REALTEK=m
CONFIG_USB_STORAGE_DATAFAB=m (new option)

Build .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set
CONFIG_USB_STORAGE_DATAFAB=m

Linux Days Prague 2014

Practical Issues
● How to distinguish “options not specified

by user” that should get default value?
● For options where default matches user

config, did user want that or just didn't care?
● The default value might change in a new

version, but the old value in user config wins?

Linux Days Prague 2014

Practical Issues
● How to distinguish “options not specified

by user” that should get default value?
● For options where default matches user

config, did user want that or just didn't care?
● The default value might change in a new

version, but the old value in user config wins?

● Solution: tool which compares resulting
user config with the default and trims it
● Only options that differ stored as user config
● Rest added from default → same final config

Linux Days Prague 2014

User config trimming

Gentoo .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK=m

User .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set

Trimmed user .config:

CONFIG_USB_STORAGE_REALTEK is not set

Linux Days Prague 2014

Build with user config
Trimmed user .config:

CONFIG_USB_STORAGE_REALTEK is not set

Gentoo .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK=m

Build .config (same as before trim!)

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set

Linux Days Prague 2014

Build with user config
Trimmed user .config:

CONFIG_USB_STORAGE_REALTEK is not set

Gentoo .config (new version):

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG is not set
CONFIG_USB_STORAGE_REALTEK=m

Build .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG is not set
CONFIG_USB_STORAGE_REALTEK is not set

Linux Days Prague 2014

Practical Issues
● What if some user options don't differ

from default now, but users wants to
override future default changes?
● Add them to the “trimmed” config manually
● Maybe won't happen in practice anyway
● See if it's worth any tool support

– Such as extended make menuconfig

Linux Days Prague 2014

User config adjustment

User .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK is not set

Gentoo .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK=m

Trimmed and edited user .config:

CONFIG_USB_STORAGE_REALTEK is not set
CONFIG_USB_STORAGE_DEBUG=y

Linux Days Prague 2014

Practical Issues
● What happens to options missing in user

config due to dependencies? Such as a
prerequisite option disabled by the user?
● There is no “#CONFIG_FOO is not set” entry

at all in the resulting config
● Gentoo config will supply its own defaults,

most likely enabled or module for drivers
● Thus, these defaults will fail to be enabled

– We want to warn about such cases (see later)
– There would be lots of false warnings due to this

Linux Days Prague 2014

Masked Options Issue

User .config (before trimming!):

CONFIG_USB_STORAGE is not set

Gentoo .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK=m

Trimmed user .config:

CONFIG_USB_STORAGE is not set

No mention of
CONFIG_USB_STORAGE_DEBUG and
CONFIG_USB_STORAGE_REALTEK
as they depend on USB_STORAGE

We trim _DEBUG and
_REALTEK away (missing in

user .config also means “different
value” than Gentoo config).

Linux Days Prague 2014

Masked Options Issue
Build .config (trimmed user + Gentoo defaults)

CONFIG_USB_STORAGE is not set (from user config)
CONFIG_USB_STORAGE_DEBUG=y (from Gentoo default)
CONFIG_USB_STORAGE_REALTEK=m (from Gentoo default)

Build .config after make oldconfig

CONFIG_USB_STORAGE is not set

make oldconfig
removes everything
not satisfied by deps

Here we compare with both user and Gentoo configs
and warn that _DEBUG and _REALTEK are missing because
there is a deps problem. But it's not useful in this case!

Gentoo defaults supplied for
unspecified options as usual.

Linux Days Prague 2014

Masked Opts Solution?

User .config (before trimming):

CONFIG_USB_STORAGE is not set

Gentoo .config:

CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG=y
CONFIG_USB_STORAGE_REALTEK=m

Trimmed user .config:

CONFIG_USB_STORAGE is not set
CONFIG_USB_STORAGE_DEBUG is not set
CONFIG_USB_STORAGE_REALTEK is not set

Adjusted trimming:

Explicitly mark missing options
as if they were disabled by user.

(They effectively were!)

Linux Days Prague 2014

Masked Opts Solution?
Build .config (all effectively from user config)

CONFIG_USB_STORAGE is not set
CONFIG_USB_STORAGE_DEBUG is not set
CONFIG_USB_STORAGE_REALTEK is not set

Build .config after make oldconfig

CONFIG_USB_STORAGE is not set

make oldconfig
removes everything
not satisfied by deps

Here we compare with both user and Gentoo configs.
Gentoo config is no-op since it supplied no values here.
User config supplied options that are now missing, but
it's OK, since they were explicitly disabled (“not set”).

Gentoo defaults have nothing
to add in this case.

Linux Days Prague 2014

How Does It Solve Things?

● New .config options appear on bump
● Did not exist when making user config
● Drivers likely to be enabled in Gentoo .config

– Potentially unneeded modules will be installed
● Gradually increasing number over time

– Once in a while, user can update own config
– Or could we distinguish drivers and disable them?
– Could be masked by user disable umbrella option

● Config dependency problem, discussed later

● Other options - according to Gentoo .config
– Should not result in misconfigured system

Linux Days Prague 2014

How Does It Solve Things?

● Options disappear on version bump
● User did not care about? No problem.
● User explicitly enabled? Issue warning.

– User can decide not to boot the new kernel

● Options being renamed
● Issue warning about old option gone
● New option according to Gentoo .config
● Or, there could be a list of known instances

– Determined by us updating the Gentoo .config

Linux Days Prague 2014

How Does It Solve Things?

● Complete driver replacement
● Warning would get issued
● New driver would likely be enabled

– But as a module – be careful!
● Can't help if related configuration is different

– No automatic solution to that...
– Do not delete old kernels too quickly :)

● New umbrella option appears on bump
● Gentoo .config has it likely enabled
● If not, it's an option dependency problem

Linux Days Prague 2014

How Does It Solve Things?

● Default values changing on bump
● Upstream changes masked by Gentoo .config
● But the Gentoo .config may change values
● User-specified values will override that

– Tricky to issue some kind of warning here
● Unspecified values will just change

– Since the user did not care before to set the
previous default explicitly, the new default should
still work for him?

Linux Days Prague 2014

How Does It Solve Things?

● Dependencies between options change
● User's or default options no longer have their

deps satisfied or conflict with other options
– Includes “used-disabled umbrella for new default-

enabled option“ and “new umbrella for user-
enabled option not enabled by default”

● The safe solution here is to abort build for
user's options and warn for default options
– Do it in pkg_pretend phase to prevent surprises in

the middle of a long emerge?
– Experience will show how often this happens
– Possibly handle some of this automatically?

Linux Days Prague 2014

Possible Improvements
● Updating user config to a new kernel

● Should not be necessary as much as possible,
but still helpful once in a while
– Silence warnings due to options that are gone
– Disable new drivers that came from the default

● A tool could assist with the update
– To see which drivers are “new”, it will need the

original untrimmed user config – so it should just
be kept around after trimming

– Just run “make oldconfig” on the untrimmed user
config, and store+trim the result

● Caveat: make oldconfig will not propose Gentoo defaults

Linux Days Prague 2014

Could All This Be Simpler?

● Can't we just run “make localmodconfig”
on the Gentoo default .config during each
build? Don't think so...
● Not reliable enough (?)
● Will disable modules not currently loaded...

– USB devices not plugged in since reboot
– Network protocols not used yet

● Would not allow other kinds of configuration
changes

Linux Days Prague 2014

Step 3: Ebuild dependencies

● With user configs in place, supporting
config requirements from ebuilds is easy
● Ebuilds would install config snippets in /etc

– Just reimplement linux-info.eclass functions ?
● When creating final .config, process in

following order:
– Trimmed user .config copied as a whole
– ebuild snippets add options unspecified by user

● Warn for options specified differently by user

– Default Gentoo config adds options not specified
by user nor ebuild requirements

Linux Days Prague 2014

Problems With Ebuilds
● ebuilds may want conflicting options

● If such exist, conflict in ebuild's DEPEND too!

● Kernel may need to be rebuilt and booted
after new config snippets are installed
● No way to trigger rebuild as subslots now do
● Triggering reboot of course not an option :)

● Kernel options might need to be satisfied
at build time already! (→ no install to /etc)
● Keep using pkg_pretend, tell user to create

temporarily the needed snippet manually

Linux Days Prague 2014

So What's The Plan?
● Create a gentoo-kernel package (step 1)

● Build and install kernel from ebuild with
single .config, support at least simple and
common boot configurations

● Try reuse experience from Funtoo/CL

● Prototype config manipulation (step 2)
● Put it to some testing, see what was missed

● Config snippets from ebuilds (step 3)
● Change eclass internals

Linux Days Prague 2014

Thank you.

emerge gentoo-kernel soon?

	Slide 1
	page2 (1)
	page2 (2)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	page20 (1)
	page20 (2)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

